Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
1)
s1 = 100m
t1 = 25s
s2 = 50m
t2 = 20s
Vận tốc trong bình của xe trên quãng đường xuống dốc là:
vtb1 = \(\frac{s_1}{t_1}=\frac{100}{25}=4\)(m/s)
Vận tốc trung bính của xe trên quãng đường xe lăn tiếp là:
vtb2 = \(\frac{s_2}{t_2}=\frac{50}{20}=2,5\)(m/s)
Vận tốc trung bình của xe trên cả đoạn đường là:
vtb = \(\frac{s_1+s_2}{t_1+t_2}=\frac{100+50}{25+20}=3,\left(3\right)\)(m/s)
2) Gọi s là quãng đường AB
t1 là thời gian đi trên nửa quãng đường đầu
t2 là thời gian đi trên nửa quãng đường sau
s1 là nửa quãng đường đầu.
s2 là nửa quãng đường sau
s1 = s2 = \(\frac{s}{2}\)
Thời gian xe chạy trên nửa quãng đường đầu là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{2.5}=\frac{s}{10}\)(s)
Thời gian xe chạy trên nửa quãng đường sau là:
t2 = \(\frac{s_2}{v_2}=\frac{s}{2.3}=\frac{s}{6}\)(s)
Vận tốc trung bình trên cả đoạn đường AB là :
\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{s}{\frac{s}{10}+\frac{s}{6}}=\frac{1}{\frac{1}{10}+\frac{1}{6}}=3,75\)(m/s)
\(=>t1=\dfrac{\dfrac{1}{3}S}{12}=\dfrac{S}{36}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{3}S}{8}=\dfrac{S}{24}\left(h\right)\)
\(=>t3=\dfrac{\dfrac{1}{3}S}{6}=\dfrac{S}{18}\left(h\right)\)
\(=>vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{24}+\dfrac{S}{18}}=\dfrac{S}{\dfrac{432S+648S+864S}{15552}}\)
\(=\dfrac{S}{\dfrac{1944S}{15552}}=\dfrac{15552}{1944}=8km/h\)
Gọi $s$ là chiều dài đoạn đường $AB$.
Thời gian đi nửa đoạn đường đầu tiên là:$t_1=\frac{\frac{s}{2} }{v_1}=\frac{s}{2v_1}$, với $v_1=20$km/h
Gọi $t_2$ là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian $\frac{t_2}{2}$
Người đó đi với vận tốc $v_2=10$ km/h; do đó đoạn đường đi được trong thời gian này là: $v_2.\frac{t_2}{2}$. Và cuối cùng trong thời gian $\frac{t_2}{2} $
Còn lại người đó dắt bộ với vận tốc $v_3=5$ km/h; do đó đoạn đường đi được trong thời gian này là $v_3.\frac{t_2}{2} $. Như vậy ta có: $\frac{s}{2}=v_2.\frac{t_2}{2}+v_3.\frac{t_2}{2} $,
Suy ra $t_2=\frac{s}{v_2+v_3} $. Thời gian đi hết toàn bộ quãng đường $AB$ là:
$t=t_1+t_2=\frac{s}{2v_1}+\frac{s}{v_2+v_3}=s\left ( \frac{1}{2v_1}+\frac{1}{v_2+v_3} \right ) $
Từ đó, vận tốc trung bình trên cả đoạn đường $AB$ là:
$v=\frac{s}{t}=\frac{1}{\frac{1}{2v_1}+\frac{1}{v_2+v_3} } $
Thay số ta được $v=\frac{40.15}{40+25}\approx 10,9$km/h.
b biết làm cách 2 ko? viết về ẩn t2 í. t đang cần làm cách đó gấp
Đổi: 6m/s=21,6km/h
Thời gian đi trên đoạn đường 1:
\(S_1=v_1\cdot t_1\Rightarrow t_1=\dfrac{5,4}{21,6}=0,25h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S}{t_1+t_2}=\dfrac{S}{0,25+0,4}=18\)
\(\Rightarrow S=11,7km\)
+ Quãng đường người đó đi được trong 1/3 giờ đầu là :
\(s_1=v_1.t_1=12.\dfrac{1}{3}=4\left(m\right)\)
+ Quãng đường người đó đi được trong thời gian còn lại là :
\(s_2=v_2.t_2=9.\dfrac{2}{3}=6\left(m\right)\)
+ Vận tốc trung bình người đó đi trên cả quảng đường là :
\(v=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{4+6}{\dfrac{1}{3}+\dfrac{2}{3}}=10\) (m/s)
Vậy Vận tốc trung bình người đó đi trên cả quảng đường là 10 m/s
Gọi t là \(\dfrac{1}{3}\) thời gian đầu
\(\Rightarrow\)3t là tổng thời gian
\(\Rightarrow\)2t là thời gian còn lại.
Ta có: \(V_{tb}=\dfrac{S_1+S_2}{t+2t}=\dfrac{S_1+S_2}{3t}\)(*)
Lại có:
\(S_1=V_1.t=12t\left(1\right)\)
\(S_2=V_2.2t=9.2t=18t\left(2\right)\)
Thay \(\left(1\right)\)và\(\left(2\right)\)vào (*) ta được:
\(V_{tb}=\dfrac{S_1+S_2}{3t}=\dfrac{12t+18t}{3t}=\dfrac{30t}{3t}=10\)(m/s)
Vậy vận tốc trung bình của người đó trên cả đoạn đường là: \(10\)m/s