Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều dài và chiều rộng ban đầu của mảnh đất hình chữ nhật lần lượt là \(x,y\left(x\ge y>0\right)\)
Vì chu vi ban đầu của hình chữ nhật là 120m nên ta có phương trình \(2\left(x+y\right)=120\)\(\Leftrightarrow x+y=60\)(1)
Chiều rộng lúc sau là: \(y+5\)(m)
Chiều dài lúc sau là: \(x-25\%x=75\%x=\frac{3}{4}x\)(m)
Chu vi hình chữ nhật lúc sau là: \(2\left(y+5+\frac{3}{4}x\right)=\frac{3}{2}x+2y+10\)
Vì chu vi lúc sau bị giảm đi 10m nên ta có phương trình \(120-\left(\frac{3}{2}x+2y+10\right)=10\)
\(\Leftrightarrow\frac{3}{2}x+2y+10=110\)\(\Leftrightarrow\frac{3}{2}x+2y=100\)\(\Leftrightarrow3x+4y=200\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}x+y=60\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+3y=180\\3x+4y=200\end{cases}}\Leftrightarrow\hept{\begin{cases}y=20\\x=40\end{cases}}\)(nhận)
Vậy diện tích mảnh đất ban đầu là \(20.40=800\left(m^2\right)\)
Bài giải:
Nửa chu vi mảnh đất là: 120:2=60(m)
HV có cạnh dài là: 60:2=30(m)
CR mảnh đất đó là: 30-5=25(m)
CD mảnh đất đó là: 60-25=35(m)
DT mảnh đất ban đầu là: 35x25=875(m2)
Đáp số:875 m2
thick cho mình nha.

Gọi a,b là chiều dài và chiều rông
Ta có: \(\hept{\begin{cases}a+b=\frac{80}{2}=40\\3b+5=2a\end{cases}}\)
Từ đây: a=40-b
Thế vô:
\(120-3a+5=2a\)
Suy ra: a=25
Suy ra: b=15
Vậy S=375 m2

Nửa chu vi miếng đất hình chữ nhật là: 100:2=50(m)100:2=50(m)
Gọi chiều dài miếng đất là: x(m)x(m)
chiều rộng miếng đất là: y(m)y(m)
(y<x<50)(y<x<50)
Miếng đất hình chữ nhật có nửa chu vi là 50m50m.
⇒ Phương trình: x+y=50x+y=50 (1)(1)
5 lần chiều rộng hơn 2 lần chiều dài 40m.
⇒ Phương trình: −2x+5y=40−2x+5y=40 (2)(2)
Từ (1)(1) và (2)(2) ta có hệ phương trình:
{x+y=50−2x+5y=40{x+y=50−2x+5y=40
⇔ {y=50−x−2x+5(50−x)=40{y=50−x−2x+5(50−x)=40
⇔ {y=50−x−2x+250−5x=40{y=50−x−2x+250−5x=40
⇔ {y=50−x−2x−5x=40−250{y=50−x−2x−5x=40−250
⇔ {y=50−x−7x=−210{y=50−x−7x=−210
⇔ {y=50−30x=30{y=50−30x=30
⇔ {y=20(Nhận)x=30(Nhận){y=20(Nhận)x=30(Nhận)
Vậy miếng đất hình chữ nhật có chiều dài là 30m30m và chiều rộng 20m20m.

Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m

Nửa chu vi mảnh đất: \(\dfrac{320}{2}=160\left(m\right)\)
Gọi chiều dài mảnh đất là x(m) với x>0
Chiều rộng mảnh đất là: \(160-x\) (m)
Hai lần chiều dài mảnh đất là: \(2x\) (m)
Ba lần chiều rộng là: \(3\left(160-x\right)\) (m)
Do hai lần chiều dài hơn 3 lần chiều rộng là 20m nên ta có pt:
\(2x-3\left(160-x\right)=20\)
\(\Leftrightarrow5x=500\)
\(\Rightarrow x=100\left(m\right)\)
Vậy mảnh đất dài 100m, rộng \(160-100=60\left(m\right)\)

Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)

Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

Gọi chiều rộng là x
Chiều dài là 60-x
Theo đề, ta có: (63-x)(x+5)=x(60-x)+265
\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)
=>58x+315=60x+265
=>-2x=-50
=>x=25
Vậy: Chiều rộng là 25m
Chiều dài là 35m