K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m

Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago

Theo bài ra ta có:

$a^2+(a+6)^2=10(a+a+6)$

$\Leftrightarrow 2a^2+12a+36=20a+60$

$\Leftrightarrow a^2-4a-12=0$

$\Leftrightarrow (a-6)(a+2)=0$

Vì $a>0$ nên $a=6$

Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)

27 tháng 1 2023

Gọi chiều dài, chiều rộng mảnh đất lần lượt là: `x;y (m)`

           `ĐK: y > x; x,y > 0;y > 6`

Theo bài ra ta có hệ ptr:

`{(y-x=6),(x^2+y^2=5.2.(x+y)):}`

`<=>{(x-y=-6<=>x=y-6),(x^2+y^2-10x-10y=0):}`

`<=>(y-6)^2+y^2-10(y-6)-10y=0`

`<=>y^2-12y+36+y^2-10y+60-10y=0`

`<=>2y^2-32y+96=0`

`<=>[(y=12(t//m)),(y=4(ko t//m)):}`

  `=>x=12-6=6`

Vậy `CD=12 m ; CR=6 m`

27 tháng 1 2023

bạn ơi, đã gọi chiều dài là x và chiều rộng là y thì sao suy y - x = 6 được??

20 tháng 5 2016

Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (a > 6, b > 0)

Diện tích mảnh vườn là: a.b (m2)

Chiều dài hơn chiều rộng 6m nên ta có: a – b = 6

Áp dụng định lý Pitagore, ta có bình phương độ dài đường chéo hình chữ nhật là a2 + b2

Theo đề ra ta có: a2 + b2 = 2,5ab

mà a – b = 6 Û a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :

(b + 6)2 + b2 = 2,5b.(b + 6)

⇔ 2b2 +12b + 36 = 2,5b2 +15b

⇔ 0,5b2 + 3b - 36 = 0 Û b2 + 6b - 72 = 0

Giải ra ta được b = 6 ; a = b + 6 = 12

Diện tích mảnh vườn là S = a.b = 12.6 = 72 (m2)

Vậy mảnh vườn hình chữ nhật có diện tích 72m2.

31 tháng 1 2021

Câu 1: 

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)

\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)

Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm

Câu 1: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chu vi mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

hay a+b=14(1)

Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:

\(a^2+b^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)

Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

19 tháng 11 2018

Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y

(21 > x > y > 0; m)

Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42

Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2   +   y 2   =   152

Suy ra hệ phương trình:

x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225       1

Giải phương trình (1) ta được:

2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12

Với x = 9 thì y = 12 (loại)

Với x = 12 thì y = 9 (thỏa mãn)

Vậy chiều rộng mảnh đất ban đầu là 9m.

Đáp án: C

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)

=> chiều dài mảnh đất là x+6 (m)

Theo định lý Pytago ta có độ dài đường chéo là:

x2+(x+6)2=2x2+12x+36(m)⇒2x2+12x+36=654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒[x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)

Vậy diện tích mảnh đất là 

25 tháng 1 2022

loading...  

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của hình chữ nhật(Điều kiện: 0<a<14; 0<b<14 và \(a\ge b\))

Vì chu vi của mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

\(\Leftrightarrow a+b=14\)(1)

Ta có: a+b=14(cmt)

mà \(a\ge b\)

nên 2a>14

hay a>7

\(\Leftrightarrow b< 7\)

Vì độ dài đường chéo mảnh đất là 10m nên ta có phương trình:

\(a^2+b^2=10^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình: 

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2+b^2-28b+196-100=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left[{}\begin{matrix}b=6\left(nhận\right)\\b=8\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-6=8\left(nhận\right)\\b=6\end{matrix}\right.\)

Vậy: Chiều dài của mảnh đất là 8m; chiều rộng của mảnh đất là 6m

1 tháng 2 2021

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)(TM)

 

Vậy HPT có nghiệm (x;y)= (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 8cm và 6cm