Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ vật "lò xo - vật - Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn.
Chọn mặt phẳng ngang đi qua vị trí A làm mốc tính thế năng trọng trường ( W t = 0) và chọn vị trí lò xo không bị biến dạng làm mốc thế năng đàn hồi ( W đ h = 0). Khi đó cơ năng của hệ vật tại vị trí bất kì có giá trị bằng tổng của động năng W đ thế năng trọng trường W t và thế năng đàn hồi W đ h :
W = W đ + W t + W đ h = m v 2 /2 + mgh + k ∆ l 2 /2
ại vị trí A, lò xo bị nén một đoạn ∆ l = (10 + 30). 10 - 2 = 40. 10 - 2 m, vật có động năng W đ (A) = 0 và thế năng trọng trường W t (A) = 0, nên cơ năng của hệ vật tại A đúng bằng thế năng đàn hồi của lò xo :
W(A) = W đ h (A) = k ∆ l 2 /2 = 800. 40 . 10 - 2 2 = 64(J)
Khi buông nhẹ tay để thả cho vật từ vị trí A chuyển động lên phía trên tới vị trí B cách A một đoạn ∆ l = 40 cm, tại đó lò xo không bị biến dạng, thế năng đàn hồi W đ h = 0. Sau đó, vật tiếp tục chuyển động từ vị trí B lên tới vị
trí C có độ cao h m a x = BC, tại đó vật có vận tốc v C = 0 và động năng W đ (C) = 0, nên cơ năng của hệ vật tại C bằng :
W(C) = mg( ∆ l + h m a x ) + k h m a x 2 /2
Áp dụng định luật bảo toàn cơ năng cho chuyển động của hệ vật từ vị trí A qua vị trí B tới vị trí C, ta có :
W(C) = W(B) = W(A) ⇒ mg( ∆ l + h m a x ) + k h m a x 2 /2 = 64
Thay số, ta tìm được độ cao h m a x = BC :
8.10.(40. 10 - 2 + h m a x ) + 800. h m a x /2 = 64 ⇒ 50 h 2 + 10h - 4 = 0
Phương trình này có nghiệm số dương : h m a x = BC = 20 cm.
Như vậy, độ cao lớn nhất mà vật đạt tới so với vị trí A bằng :
H m a x = AB + BC = 40 + 20 = 60 cm
Hệ vật "lò xo - vật - Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn.
Chọn mặt phẳng ngang đi qua vị trí A làm mốc tính thế năng trọng trường ( W t = 0) và chọn vị trí lò xo không bị biến dạng làm mốc thế năng đàn hồi ( W đ h = 0). Khi đó cơ năng của hệ vật tại vị trí bất kì có giá trị bằng tổng của động năng W đ thế năng trọng trường W t và thế năng đàn hồi W đ h :
W = W đ + W t + W đ h = m v 2 /2 + mgh + k ∆ l 2 /2
Tại vị trí cân bằng O : hệ vật đứng yên, lò xo bị nén một đoạn ∆ l 0 =10 cm và lực đàn hồi F đ h cân bằng với trọng lực P tác dụng lên vật :
k ∆ l 0 = mg
⇒ k ∆ l 0 = mg ⇒ k = mg/ ∆ l 0 = 8.10/10. 10 - 2 = 800(N/m)
Đáp án B
Giai đoạn 1:
- Sau khi kéo vật B xuống dưới 20 cm và thả nhẹ thì hệ đi lên, hai vật A và B cùng vận tốc, gia tốc đến khi lực căng dây bằng 0.
Giai đoạn 2:
- Dây chùng vật B chuyển động giống như vật được ném thẳng đứng lên trên với vận tốc ban đầu ở giai đoạn này là vận tốc ở cuối giai đoạn (Tc = 0)
- Vận tốc đầu giai đoạn 2 tính từ định luật bảo toàn cơ năng cho con lắc là:
- Quãng đường đi được ở giai đoạn 2 đến khi dừng lại (đạt độ cao lớn nhất) là:
- Kết thúc giai đoạn 2 vật B đã lên đến độ cao so với ban đầu khi buông là:
Giai đoạn 3:
Vật B tuột khỏi dây từ độ cao 4,5m rơi đến vị trí thả ban đầu là chuyển động rơi tự do, ta có:
Hệ vật "Lò xo — Vật trượt -Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn.
Chọn mặt phẳng ngang làm mốc thế năng trọng trường ( W t = 0) và chọn vị trí cân bằng của vật tại điểm O làm mốc thế năng đàn hồi ( W đ h = 0). Vì hệ vật chuyển động trên cùng mặt phẳng ngang, nên cơ năng của hệ vật tại vị trí bất kì có giá trị bằng tổng của thế năng đàn hồi và động năng :
W = W đ h + W đ = k ∆ l 2 /2 + m v 2 /2
Muốn xác định công suất của lực đàn hồi, ta phải tính được lực đàn hồi của lò xo và vận tốc của vật tại cùng một vị trí.
Chọn chiểu lò xo bị nén là chiều dương. Tại vị trí A : lò xo bị nén một đoạn Δl = 10 cm > 0 và vật rời xa vị trí cân bằng có vận tốc v > 0, nên lực đàn hồi của lò xo (chống lại lực nén) ngược hướng với vận tốc của vật và có giá trị bằng :
F đ h = -k ∆ l =-500. 10. 10 - 2 = -50N < 0
Cơ năng của hệ vật tại vị trí A bằng :
W(A) = W(O) ⇒ m v A 2 /2 + k ∆ l 2 /2 = m v 0 2 /2
Hay:
Thay số, ta tìm được vận tốc của vật trượt tại vị trí A :
Từ đó suy ra công suất của lực đàn hồi tại vị trí A có độ lớn bằng :
P = | F đ h v A | = 50.3 = 150 W
Hệ vật "Quả cầu - Lò xo - Trái Đất" là hệ cô lập, do không chịu tác dụng các ngoại lực (lực ma sát, lực cản), chỉ có các nội lực tương tác (trọng lực, phản lực, lực đàn hồi), nên cơ năng của hệ vật bảo toàn.
Chọn vị trí cân bằng của hệ vật làm gốc tính thế năng đàn hồi, chiều lò xo bị kéo dãn là chiều dương.
- Tại vị trí ban đầu : quả cầu có vận tốc v 0 = 0 và lò xo bị kéo dãn một đoạn ∆ l 0 > 0 cm, nên cơ năng của hệ vật:
W 0 = k( ∆ l 0 )2/2
- Tại vị trí cân bằng: quả cầu có vận tốc v ≠ 0 và lò xo không bị biến dạng ( ∆ = 0), nên cơ năng của hệ vật :
W = m v 2 /2
Áp dụng định luật bảo toàn cơ năng cho chuyển động của hệ vật:
W = W 0 ⇒ m v 2 /2 = k( ∆ l 0 )2/2
Suy ra vận tốc của quả cầu khi nó về tới vị trí cân bằng:
v = ∆ l 0 k / m = 3. 10 - 2 100 / 40 . 10 - 3 = 1,5(m/s)
Hệ vật ta xét gồm "Quả cầu - Lò xo - Trái Đất" là hệ cô lập.
Cơ năng W của hệ vật này có giá trị bằng tổng của động năng ( W đ ), thế năng trọng trường ( W t ) và thế năng đàn hồi ( W đ h ) :
W = W đ + W t + W đ h
Chọn gốc toạ độ là vị trí cân bằng của hệ vật (quả cầu đứng yên) và chiều dương là chiều lò xo bị kéo dãn. Do đó ta có :
- Tại vị trí ban đầu : hệ vật có W đ = 0 ( v 0 = 0) lò xo bị dãn một đoạn Δ so với vị trí cân bằng, nên W t ≠ 0, W đ h ≠ 0 và cơ năng của hệ vật bằng :
W 0 = 0 + mg ∆ l + k ∆ l + ∆ l 0 2 /2
- Khi về tới vị trí cân bằng : quả cầu có W đ ≠ 0 (v ≠ 0) và W t = 0 (trùng với gốc tính thế năng đàn hồi), đồng thời lò xo bị dãn một đoạn Δ0, nên cơ năng của hệ vật bằng :
W = m v 2 /2 + 0 + k ∆ l 0 2 /2
Chú ý : Hệ vật này được treo thẳng đứng nên tại vị trí cân bằng của nó, lò xo đã bị dãn một đoạn ∆ 0 thoả mãn điều kiện :
mg + k ∆ 0 = 0 ⇒ mg = -k ∆ 0
với P = mg là trọng lực và F đ h = k ∆ là lực đàn hồi tác dụng lên hệ vật
Áp dụng định luật bảo toàn cơ năng cho hệ vật, ta có :
W = W 0 ⇒ mg ∆ l + k ∆ l + ∆ l 0 2 /2 = m v 2 /2 + k ∆ l 0 2 /2
⇒ mg ∆ l + k ∆ l 2 /2 + k ∆ l ∆ l 0 /2 + k ∆ l 0 2 /2 = m v 2 /2 + k ∆ l 0 2 /2
Vì mg = -k ∆ 0 , nên sau khi rút gọn hai vế của phương trình, ta được
k ∆ l 2 /2 = m v 2 /2
Từ đó suy ra vận tốc của quả cầu khi nó về tới vị trí cân bằng:
Đáp án B
Tại vị trí lò xo nén 10cm, cơ năng dàn hồi của vật bằng:
1 2 m v 2 + 1 2 k Δ l 2 = 1 2 500 0 , 1 2 = 2 , 5 J
Cơ năng đó có giá trị bằng động năng tại vị trí cân bằng
( thế năng bằng 0 ở vị trí cân bằng )
Bài này theo bảo toàn cơ năng thì độ cao lớn nhất mà vật đạt được so với vị trí cân bằng là 20 cm (bằng độ nén khi ấn xuống)