K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

Gọi x là diện tích trồng đậu, y là diện tích trồng cà, (đơn vị a = 100 m 2 ), điều kiện x ≥ 0, y ≥ 0, ta có x + y ≤ 0

    Số công cần dùng là 20x + 30y ≤ 180 hay 20 + 3y ≤ 18

    Số tiền thu được là

    F = 3000000x + 4000000y (đồng)

    Hay F = 3x + 4y (đồng)

    Ta cần tìm x, y thỏa mãn hệ bất phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Sao cho F = 3x + 4y đạt giá trị lớn nhất.

    Biểu diễn tập nghiệm của (H) ta được miền tứ giác OABC với A(0;6), B(6;2), C(8;0) và O(0;0).

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Xét giá trị của F tại các đỉnh O, A, B, C và so sánh ta suy ra x = 6, y = 2 (tọa độ điểm B) là diện tích cần trồng mỗi loại để thu được nhiều tiền nhất là F = 26 (triệu đồng).

    Đáp số: Trồng 6a đậu, 2a cà, thu hoạch 26 000 000 đồng.

9 tháng 5 2017

Gọi diện tích trồng đậu là x ( đơn vị là a, 0 < x < 8).
Diện tích trồng cà là: 8 - x (a).
Tổng số tiền thu được là: \(3000000x+4000000\left(8-x\right)=32000000-1000000x\).
Tổng số công cần là: \(20x+30\left(8-x\right)=240-10x\).
Theo yêu cầu của đề bài: \(240-10x\le180\)\(\Leftrightarrow10x\ge60\)\(\Leftrightarrow x\ge6\).
Mặt khác \(x\le8\) nên \(6\le x\le8\).
Ta cần \(32000000-1000000x\) đạt giá trị lớn nhất nên \(x=6\).
Vậy diện tích trồng đậu 6a, diện tích trồng cà là 2a thì số tiền thu được lớn nhất bằng: \(32000000-1000000.6=26000000\) đồng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Để quy hoạch x sào đất trồng cà tím, cần \(200\,000.x\)(đồng)

Để quy hoạch y sào đất trồng cà chua, cần \(100\,000.y\)(đồng)

Tổng số tiền để mua hạt giống là \(200{\rm{ }}000.x + 100{\rm{ }}000.y\) (đồng), tối đa là 9 triệu đồng nên ta có bất phương trình: \(0,2x + 0,1y \le 9\)

Ngoài ra số sào đất là số không âm nên \(x \ge 0\) và \(y \ge 0\)

b) + Cặp số (20; 40) thỏa mãn cả 3 bất phương trình trên vì \(0,2.20 + 0,1.40 = 8 < 9\).

+ Cặp số (40; 20) không thỏa mãn các bất phương trình trên vì \(0,2.40 + 0,1.20 = 10 > 9\).

+ Cặp số (-30; 10) không thỏa mãn các bất phương trình trên vì \( - 30 < 0\).

16 tháng 12 2022

Gọi x là diện tích trồng đậu, y là diện tích trồng cà, (đơn vị a = 100 m2m2), điều kiện x0,y0x≥0,y≥0, ta có x+y8x+y≤8.

Số công cần dùng là 20x+30y18020x+30y≤180 hay 2x+3y182x+3y≤18.

Số tiền thu được là

F=3000000x+4000000yF=3000000x+4000000y(đồng)

Hay F=3x+4yF=3x+4y (triệu đồng)

Ta cần tìm x, y thỏa mãn hệ bất phương trình x+y82x+3y18x0y0{x+y≤82x+3y≤18x≥0y≥0

Sao cho F=3x+4yF=3x+4y đạt giá trị lớn nhất.

Biểu diễn tập nghiệm của (H) ta được miền tứ giác OABC với A(0;6), B(6;2), C(8;0) và O(0;0).

Xét giá trị của F tại các đỉnh O, A, B, C và so sánh ta suy ra x=6,y=2x=6,y=2 (tọa độ điểm B) là diện tích cần trồng mỗi loại để thu được nhiều tiền nhất là F = 26 (triệu đồng).

Đáp số: Trồng 6(a) đậu, 2(a) cà, thu hoạch 26 000 000 đồng.

 

28 tháng 12 2023

loading... loading... 

29 tháng 3 2017

Chọn B

Gọi x; y lần lượt là số cái bánh đậu xanh, bánh dẻo . Khi đó; số tiền lãi là L= 2x+ 1,8 y

Bài toán trở thành tìm số tự nhiên x; y  thoả mãn hệ

  sao cho L= 2x+ 1,8 y lớn nhất.

Từ đó ta có  thì L đạt giá trị lớn nhất.

Vậy cần 625 bánh đậu xanh và 3750 bánh dẻo thì lãi lớn nhất.