Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích của hình trụ là: π m 2 k
Thể tích của hình nón là: π m 2 k
Vậy thể tích của hình nón bằng thể tích hình trụ. Do đó, khi chứa đầy cát vào hình nón rồi đổ hết sang hình trụ thì độ cao của cát trong hình trụ sẽ là
Theo pytago ta có
\(l^2=h^2+r^2=12^2+5^2=169=13^2\)
\(\Rightarrow l=13\)
\(S_{xq}=\Pi.r.l=3,14.5.13=204,1cm^2\)
Ta có: \(l^2=h^2+r^2\left(pytago\right)\)
=> \(l^2=12^2+5^2=169\)
=> l = 13 (cm)
Diện tích xung quanh hình nón là:
\(S_{xp}=\pi rl\approx3,14.5.13=204,1\left(cm^2\right)\)
KL: Diện tích xung quanh hình nón là 204,1 cm2
Vậy khi múc đầy nước vào hình nón và đổ vào hình trụ (Không chứa gì cả) thì độ cao của nước trong hình trụ là
Vậy chọn đáp án A
\(1.Sxq=\pi Rl=\pi3.5=15\pi cm^2\)
\(Stp=Sxq+\pi R ^2=15\pi+9\pi=24\pi cm^2\)
\(2.V=\dfrac{1}{3}\pi R^2.\sqrt{l^2-R^2}=\dfrac{1}{3}\pi.3^2.\sqrt{5^2-3^2}=12\pi cm^3\)
Thể tích hình nón : V = (1/3) π . r 2 h ( c m 3 )
Vậy chọn đáp án B
Đáp án là D