Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m
Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago
Theo bài ra ta có:
$a^2+(a+6)^2=10(a+a+6)$
$\Leftrightarrow 2a^2+12a+36=20a+60$
$\Leftrightarrow a^2-4a-12=0$
$\Leftrightarrow (a-6)(a+2)=0$
Vì $a>0$ nên $a=6$
Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(2x+40+3x)=480
=>5x+40=240
=>x=40
Vậy: Chiều rộng là 40m
Chiều dài là 60m
Gọi \(x,y\left(m\right)\) lần lượt là chiều dài và rộng \(\left(x,y>0\right)\)
Theo đề, ta có :
\(\left\{{}\begin{matrix}x-20=y\\2\left(2x+3y\right)=480\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=20\\2x+3y=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\left(n\right)\\y=40\left(n\right)\end{matrix}\right.\)
Vậy chiều dài là \(60m\), chiều rộng là \(40m\)