Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)
Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)
Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì \(\omega\) có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)
Do vậy tọa độ của A, B là nghiệm của hệ :
\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)
Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)
a) Gọi chiều dài là a, chiều rộng là b.
Nửa chu vi hình chữ nhật là : \(\dfrac{94,4}{2}=47,2\left(m\right)\)
Ta có hệ pt : \(\left\{{}\begin{matrix}a+b=47,2\\a\cdot b=494,55\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=47,2-b\\\left(47,2-b\right)\cdot b=494,55\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=47,2-b\\47,2b-b^2=494,55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=47,2-15,7=31,5\\b=15,7\left(giải-HPT-bậc-2\right)\end{matrix}\right.\)
Vậy chiều dài là 31,5 mét, chiều rộng 15,7 mét.
b) Vẫn gọi chiều dài là a, chiều rộng là b.
Có hpt : \(\left\{{}\begin{matrix}a-b=12,1\\a\cdot b=1089\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\\left(12,1+b\right)\cdot b=1089\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\12,1b+b^2=1089\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=12,1+27,5=39,6\\b=27,5\left(Giải-HPT-Bậc-2\right)\end{matrix}\right.\)
Vậy chiều dài là 39,6 mét, chiều rộng là 27,5 mét.
Từ giả thiết suy ra điểm A không nằm trên 2 cạnh có phương trình đã cho. Bởi vậy, đó là phương trình của 2 đường thẳng chứa cạnh BC, CD, chẳng hạn \(BC:2x-3y+5\)
\(CD:3x+2y-7=0\)
Khi đó, đường thẳng chứa cạnh AB đi qua \(A\left(2;-3\right)\) và song song với đường thẳng CD, nên có phương trình :
\(3\left(x-2\right)+2\left(y+3\right)=0\)
hay : \(3x+2y=0\) ẳng chứa cạnh AD là :
\(2x-3y-11=0\)
Diện tích mỗi phần:
\(\left(\frac{15}{4}\cdot\frac{2}{3}\right):5=\frac{1}{2}\left(m^2\right)\)
Đáp số : \(\frac{1}{2}m^2\)
Gọi 2 cạch của HCN lần lượt là a và b (a<b)
\(\Rightarrow\frac{a}{4}=\frac{b}{7};ab=112\)
\(\Rightarrow\frac{a^2}{16}=\frac{b^2}{49}=\frac{a.b}{4.7}=\frac{112}{28}=4\)
\(\Rightarrow\begin{cases}a=\pm8\\b=\pm14\end{cases}\)
Mà a;b>0
\(\Rightarrow\begin{cases}a=8\\b=14\end{cases}\)
Vậy các cạnh của HCN là 8cm và 14cm
oa, anh giỏi quá
a giải giúp các câu kia với ạ