Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quãng đường vật đi được trong 1 chu kì là: \(5+5+18=28cm\)
Trong 1 chu kì vật đi được quãng đường là 4A
\(\Rightarrow 4A = 28\)
\(\Rightarrow A = 7cm\)
Đáp án A
+ Biễu diễn các vị trí x = 0 và x = A tương ứng trên đường tròn.
→ Dễ thấy rằng quãng đường mà vật đi được giữa hai vị trí này là: S = 0,5A.
Đáp án A
+ Biễu diễn các vị trí x = 0,5A và x = 0,5A theo hai chiều chuyển độngtương ứng trên đường tròn.
→ Dễ thấy rằng quãng đường mà vật đi được giữa hai vị trí này là
S = 0,5A + 0,5A = 1A.
Từ cách biểu diễn trên, ta có thể rút ra được các trường hợp đặc biệt:
Trong khoảng thời gian một chu kì, quãng đường mà vật dao động đi được luôn là 4A.
Trong nửa chu kì quãng đường mà vật nhỏ đi được luôn là 2A
Biên độ: A = 16/4 = 4cm.
Biểu diễn dao động điều hòa bằng véc tơ quay. Khi vật đi từ x1 đến x2 thì véc tơ quay một góc là:
\(30+60=90^0\)
Thời gian tương ứng: \(\frac{90}{360}T=\frac{1}{4}.0,4=0,1s\)
Tốc độ trung bình: \(v_{TB}=\frac{S}{t}=\frac{2+2\sqrt{3}}{0,1}=54,64\)(cm/s)
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Đáp án B
+ Biễu diễn các vị trí x = – 0,5A và x = A tương ứng trên đường tròn.
→ Dễ thấy rằng quãng đường mà vật đi được giữa hai vị trí này là S = 0,5A + A = 1,5A.