K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

Đáp án C

Một chỉnh hợp chập 2 của A là  ( 2 , 5 )

Chọn đáp án C.

Số chỉnh hợp chập 2 của A là  A 5 2

Một tổ hợp chập 2 của A là  2 , 5

Số tổ hợp chập 2 của A là  C 5 2

28 tháng 11 2021

TK:

 

Các tổ hợp chập 3 là: {1,2,3};{1,2,4};{1,2,5};{1,3,4};{1,3,5};{1,4,5};{2,3,4};{2,3,5};{2,4,5};{3,4,5}

Các tổ hợp chập 4 là:

{1,2,3,4},{1,2,3,5},{1,3,4,5},{1,2,4,5},{2,3,4,5}

9 tháng 11 2018

Đáp án D

NV
7 tháng 11 2021

\(\overrightarrow{AN}=-\dfrac{1}{2}\overrightarrow{AM}\Rightarrow V_{\left(A;-\dfrac{1}{2}\right)}\left(C\right)=\left(C'\right)\)

Đường tròn (C) tâm (3;-4)

\(\Rightarrow\) Tọa độ tâm (C'):

\(\left\{{}\begin{matrix}x'=-\dfrac{1}{2}\left(3-5\right)+5=6\\y'=-\dfrac{1}{2}\left(-4-\left(-6\right)\right)+\left(-6\right)=-7\end{matrix}\right.\) \(\Rightarrow\left(6;-7\right)\)

Chọn B

26 tháng 10 2019

9 tháng 7 2017

Các tổ hợp chập 3 là: {1,2,3};{1,2,4};{1,2,5};{1,3,4};{1,3,5};{1,4,5};{2,3,4};{2,3,5};{2,4,5};{3,4,5}

Các tổ hợp chập 4 là:

{1,2,3,4},{1,2,3,5},{1,3,4,5},{1,2,4,5},{2,3,4,5}

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ

a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)

b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)

c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)

d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)

\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)

\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)

e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)

\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)

\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)

f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)

\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)

\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)

g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)

\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)

\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)

\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)

NV
7 tháng 1

\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)

\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)

\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)

\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)

\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)

\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)

\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)

23 tháng 9 2017

a. Không gian mẫu gồm 36 phần tử:

Ω = {(i, j) | i, j = 1, 2, 3, 4, 5, 6 }

Trong đó (i, j) là kết quả "lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm".

b. Phát biểu các biến cố dưới dạng mệnh đề:

A = {(6,1), (6,2), (6,3), (6,4), (6, 5), (6, 6)}

- Đây là biến cố "lần đầu xuất hiện mặt 6 chấm khi gieo con súc sắc".

B = {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}

- Đây là biến cố " cả hai lần gieo có tổng số chấm bằng 8".

C = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

- Đây là biến cố " kết quả của hai lần gieo là như nhau".

NV
30 tháng 8 2021

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)

Tương tự và cộng lại:

\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)

Mặt khác ta có:

\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)

\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)