Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Tia đó quét nên một góc \({360^ \circ }\)
b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là \(3\frac{1}{4}\)vòng). Tia đó quét nên một góc \({3.360^ \circ } + \frac{1}{4}{360^ \circ } = {1170^ \circ }\)
c) Trong Hình 5x, toa Om quay theo chiều âm đúng một vòng. Tia đó quét nên một góc -\({360^ \circ }\)
a, Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.
Ta có: MH = 60 – 30 = 30 m.
Khi đó hoành độ điểm M là 30.
⇒ \(\;\sin \alpha {\rm{ }} = \;\frac{{MH}}{{OM}} = \;\frac{{30}}{{31}}\)
\( \Rightarrow \cos \alpha = \sqrt {1 - {{\left( {\frac{{30}}{{31}}} \right)}^2}} = \frac{{\sqrt {61} }}{{31}}\)
b, Vì các cánh quạt tạo thành 3 góc bằng nhau nên \(\widehat {MOP} = \widehat {NOP} = \widehat {MON} = {120^0}\)
\( \Rightarrow \widehat {AOP} = \widehat {MOP} - \widehat {MOA}\)
\( \Leftrightarrow \sin \widehat {AOP} = \sin \left( {\widehat {MOP} - \widehat {MOA}} \right) = \sin \widehat {MOP}.\cos \widehat {MOA} - \cos \widehat {MOP}.\sin \widehat {MOA}\)
\( = \sin \frac{{2\pi }}{3}.\cos \alpha - \cos \frac{{2\pi }}{3}.\sin \alpha \approx 0,7\)
Vì vậy chiều cao của điểm P so với mặt đất là:
31. \(\sin \widehat {AOP}\) + 60 = 31.0,7+ 60 \( \approx \) 81,76 m.
Ta có:
\(\cos \widehat {AOP} \approx \sqrt {1 - 0,{7^2}} = 0,71\)
\(\widehat {AON} = \widehat {AOP} + \widehat {PON}\)
\(\begin{array}{l} \Leftrightarrow \sin \widehat {AON} = \sin \left( {\widehat {AOP} + \widehat {PON}} \right)\\ \Leftrightarrow \sin \widehat {AON} = \sin \widehat {AOP}.\cos \widehat {PON} + \cos \widehat {AOP}.\sin \widehat {PON}\\ \Leftrightarrow \sin \widehat {AON} = 0,7.\cos \frac{{2\pi }}{3} + 0,71.\sin \frac{{2\pi }}{3} \approx 0,26\end{array}\)
\( \Rightarrow \sin \left( {OA,ON} \right) = \sin \widehat {AON} \approx 0,26\)
Vì vậy chiều cao của điểm N so với mặt đất là:
31. \(\sin \widehat {AON}\) + 60 = 31.0,26+ 60\( \approx \) 68,2 m.
a) Khi kim phút quay theo ngược chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:
\(\frac{2}{{12}} = \frac{1}{6}\) phần của vòng tròn
b) Khi kim phút quay theo đúng chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:
\(\frac{{10}}{{12}} = \frac{5}{6}\) phần của vòng tròn
c) Có 2 cách quay kim phút theo một chiều xác định để kim phút từ vị trí chỉ đúng số 2 về vị trí chỉ đúng số 12, đó là: ngược chiều kim đồng hồ và cùng chiều kim đồng hồ
Đổi \(20cm = 0,2m\)
Độ dài của cán quạt là: \(3,6 - 2,5 - 0,2 = 0,9\left( m \right)\).
Thanh OM quay được \(3\dfrac{1}{10}\) vòng thì \(\alpha=3\dfrac{1}{10}\cdot360^o=1116^o\)
Từ M kẻ MH \(\perp\) Ox
\(\Rightarrow OH=15\cdot\left|cos1116^o\right|\approx12,1\)
Vậy độ dài bóng O'M' của OM khi thanh quay được \(3\dfrac{1}{10}\) là 12,1cm.
Công thức tổng quát số đo của góc lượng giác \(\left(Ox,ON\right)=70^o+k\cdot360,k\in Z\)
Công thức tổng quát số đo của lượng giác
\(\left(Ox,OP\right)=\left(Ox,OM\right)+\left(OM,OP\right)=-50-120^o+m\cdot360^o=-170^o+m\cdot360^o,m\in Z\)
Sau một phút di chuyển, van V đã quay được một góc lượng giác có số đo góc là: \(\alpha=11\cdot60=660\left(rad\right)\)
Khi đó tọa độ điểm V biểu diễn cho góc lượng giác trên có tọa độ là: \(V\left(58\cdot cos\alpha,58\cdot sin\alpha\right)\approx\left(56;15,2\right)\)
Từ đó, khoảng cách từ van đến mặt đất khoảng \(58-15,2\approx42,8\left(cm\right)\)
a) Trong 1 giây bánh xe quay được \(\frac{{11}}{5}\) vòng.
Vì 1 vòng bằng \({360^0}\) nên góc mà bánh xe quay được trong 1 giây là:
\(\frac{{11}}{5}{.360^0} = {792^0}\)
Vì 1 vòng bằng \(2\pi \) nên góc mà bánh xe quay được trong 1 giây là:
\(\frac{{11}}{5}.2\pi = \frac{{22\pi }}{5}\;\left( {rad} \right)\)
b) Ta có: 1 phút = 60 giây
Trong 60 giây, bánh xe quay được số vòng: \(\frac{{11}}{5}.60 = 132\) vòng.
Chu vi bánh xe là \(C = 680\pi\) mm
Độ dài quãng đường người đó đi trong 1 phút là: \(680\pi. 132 =89760\pi\) mm
Trong 3s, quạt quay được: \(3\cdot\dfrac{45}{60}=\dfrac{9}{4}\left(vòng\right)\)
Vậy quạt quay được 1 góc: \(2\pi\cdot\dfrac{9}{4}=\dfrac{9\pi}{2}\left(rad\right)\)
Trong 3 giây quay được:
3*45/60=9/4(vòng)
Số đo góc quay được:
2pi*9/4=9/2*pi