Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Vận tốc dự định để ca nô đi hết quãng đường AB là: x ( x > 0 ) ( giờ )
Thời gian là: y ( y > 0 ) ( km/h)
Quãng đường AB là: xy ( km)
Vì khi ca nô tăng 2 km/h thì đến nơi sớm 2 giờ
\(\Rightarrow\left(x+2\right).\left(y-2\right)=xy\)
\(\Leftrightarrow-2x+2y=4\)
\(\Leftrightarrow-x+y=2\left(1\right)\)
Vì khi ca nô giảm 2km/h thì đền nơi muộn 3 giờ
\(\Rightarrow\left(x-2\right).\left(y+3\right)=xy\)
\(\Leftrightarrow3x-2y=6\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}-x+y=2\\3x-2y=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=10\\y=12\end{cases}}}\)
\(\Rightarrow\)Quãng đường AB là: 120 km
Gọi vận tốc dự định của ca nô là x (km/h, x > 3)
Thời gian dự định đi từ A đến B là y (h, y > 0)
Quãng đường AN là xy (km)
Nếu ca nô tăng vận tốc thêm 3 km/h thì thời gian rút ngắn được 2h nên ta có phương trình:
(x + 3) (y – 2) = xy (1)
Nếu ca nô giảm vận tốc đi 3 km/h thì thời gian tăng 3h nên ta có phương trình:
(x – 3) (y + 3) = xy (2)
Từ (1) và (2) ta có hệ phương trình:
x + 3 y − 2 = x y x − 3 y + 3 = x y ⇔ − 2 x + 3 y = 6 3 x − 3 y = 9 ⇔ x = 15 ( t m d k ) y = 12 ( t m d k )
Vậy vận tốc dự định của ca nô là 15 km/h và thời gian dự định đi từ A đến B là 12h
Đáp án:B
40 phút = \(\dfrac{2}{3}h.\)
Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)
thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)
\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)
Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:
\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)
Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)
Từ (1) và (2), ta có hpt:
\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)
Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.
Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)
(ĐK:v>10,t>\(\dfrac{2}{3}\))
Ta có quãng đường AB dài:vt(km)(1)
_Nếu xe giảm vận tốc đi 10 km thì:
+Vận tốc của xe là:v-10(km/h)
+Thời gian xe đi từ A đến B là:t+1(h)
\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)
_Nếu xe tăng vận tốc thêm 10 km thì:
+Vận tốc của xe là:v+10(km/h)
+Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)
\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)
Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt
\(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)
Vậy.........................................................................................
áp án: V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
gọi van toc cano la v va AB la s ta co hệ pt;
(s/v+3) - s/v = 2
s/v - s/v-3 =3
s=? chắc rằng bạn lam dc roi bye