Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định của ô tô là x (km/h, x>10)
thời gian dự định ô tô đi là y (giờ, y>1 )
Quãng đường AB dài là: \(xy\left(km\right)\)
Nếu vận tốc tăng 20 km/giờ thì ô tô đến B sớm hơn dự định 1 giờ.
\(\Rightarrow\left(x+20\right).\left(y-1\right)=xy\)
\(\Leftrightarrow xy-x+20y-20=xy\)
\(\Leftrightarrow-x+20y=20\)(1)
Nếu vận tốc giảm bớt đi 10 km/giờ thì ô đến B chậm so với dự định 1 giờ
\(\Rightarrow\left(x-10\right).\left(y+1\right)=xy\)
\(\Leftrightarrow xy+x-10y-10=xy\)
\(\Leftrightarrow x-10y=10\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}-x+20y=20\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y=30\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\left(TM\right)\\x=40\left(TM\right)\end{cases}}\)
Vậy độ dài quãng đường AB là: \(40.3=120\left(km\right)\)
\(96ph=\dfrac{8}{5}\left(h\right)\)
Gọi vận tốc dự định là v>10 (km/h) và thời gian dự định là t>2 (giờ)
Quãng đường AB: \(S=v.t\)
Quãng đường nếu vận tốc giảm 10km/h: \(S=\left(v-10\right)\left(t+\dfrac{8}{5}\right)\)
Quãng đường nếu vận tốc tăng 20km/h: \(S=\left(v+20\right)\left(t-2\right)\)
Do độ dài quãng đường là ko đổi nên ta có hệ:
\(\left\{{}\begin{matrix}\left(v-10\right)\left(t+\dfrac{8}{5}\right)=vt\\\left(v+20\right)\left(t-2\right)=vt\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{5}v-10t=16\\-2v+20t=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v=60\\t=8\end{matrix}\right.\)
Độ dài quãng đường: \(S=60.8=480\left(km\right)\)
Gọi vận tốc dự định đi hết quãng đường là x(km/h) và thời gian dự định là y (giờ0 với x;y>0
Độ dài quãng đường AB: \(xy\) (km)
Do người đó tăng vận tốc thêm 25km/h thì đến sớm hơn 1 giờ nên:
\(\left(x+25\right)\left(y-1\right)=xy\)
Do người đó giảm vận tốc 20km/h thì đến muộn hơn 2 giờ nên:
\(\left(x-20\right)\left(y+2\right)=xy\)
Ta có hệ: \(\left\{{}\begin{matrix}\left(x+25\right)\left(y-1\right)=xy\\\left(x-20\right)\left(y+2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+25y=25\\2x-20y=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=50\\y=3\end{matrix}\right.\)
Quãng đường: \(50.3=150\left(km\right)\)
Vận tốc dự định là x ( km/h )
Thời gian dự định là 7 ( h )
Quãng đường là xy ( km)
*) Mỗi giờ chậm hơn 10km => ( x - 10 ) km / h
=> t = \(\frac{xy}{\left(x-10\right)}=y-\frac{4}{5}\)
*) Mỗi giờ chậm hơn 20 km
t=\(\frac{xy}{x-20}=y-2\)
<=>\(\hept{\begin{cases}xy=\left(x-20\right)\left(y-2\right)\\5xy=\left(5y-4\right)\left(x-10\right)\end{cases}}\)
<=> \(\hept{\begin{cases}xy=xy-2x-20y+40\\5xy=5xy-50y-4x+40\end{cases}}\)
<=> \(\hept{\begin{cases}2x+20y=40\\50y+4x=40\end{cases}}\)
<=> \(\hept{\begin{cases}x=60\\y=4\end{cases}}\)
Đáp án:
Vận tốc dự định của ô tô là 60km/h, quãng đường AB là 240km
Giải thích các bước giải:
Đổi : $48'=\dfrac{4}{5}h
Gọi vận tốc dự định của ô tô đi từ A đếnB là x (km/h) (x>0)
Thời gian dự định của xe đi từ A đến B là y (h) (y>0)
Nếu xe chạy mỗi giờ chậm hơn 10km thì đến B chậm hơn 4545 h khi đó:
Vận tốc của xe là x-10 (km/h)
Thời gian đi của xe là y+4545 (h)
⇒⇒ Độ dài quãng đường là (x−10)(y+45)(x−10)(y+45) (km)
⇒⇒ Ta có pt: (x−10)(y+45)=xy(x−10)(y+45)=xy
↔45x−10y=8⇔4x−50y=40↔45x−10y=8⇔4x−50y=40 (1)
Nếu xe mỗi giờ chạy chậm 20 km thì đến chậm hơn 2h khi đó:
Vận tốc của xe là x-20 (km/h)
Thời gian đi của xe là y+2 (h)
⇒⇒ Độ dài quãng đường là (x-20)(y+2) (km)
⇒⇒ Ta có pt: (x−20)(y+2)=xy(x−20)(y+2)=xy
⇔2x−20y=40⇔x−10y=20⇔2x−20y=40⇔x−10y=20 (2)
Ta có hệ phương trình (1) và (2)
(2) ⇒x=20+10y⇒x=20+10y thay vào (1) ta được:
4(20+10y)−50y=40⇒y=4⇒x=60⇒4(20+10y)−50y=40⇒y=4⇒x=60⇒ quãng đường AB là 4.60=240km4.60=240km
Vậy vận tốc dự định của ô tô là 60km/h và quãng đường AB là 240km.
áp án: V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
40 phút = \(\dfrac{2}{3}h.\)
Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)
thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)
\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)
Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:
\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)
Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)
Từ (1) và (2), ta có hpt:
\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)
Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.
Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)
(ĐK:v>10,t>\(\dfrac{2}{3}\))
Ta có quãng đường AB dài:vt(km)(1)
_Nếu xe giảm vận tốc đi 10 km thì:
+Vận tốc của xe là:v-10(km/h)
+Thời gian xe đi từ A đến B là:t+1(h)
\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)
_Nếu xe tăng vận tốc thêm 10 km thì:
+Vận tốc của xe là:v+10(km/h)
+Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)
\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)
Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt
\(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)
Vậy.........................................................................................
Đặt x là vận tốc của xe (km/h, x>0) ; t là thời gian dự định đến b của ô tô
Quãng đường ab dài là :
sab=x.t(1)
Nếu tăng thêm 10 km/h thì ô tô đến sớm hơn 2 h:
sab=(x+10)(t-2) (2)
Nếu giảm vận tốc 10 km/h thì tới b chậm hơn 3h:
sab=(x-10)(t-3) (3)
(1),(2) => (x+10)(t-2)=(x-10)(t+3)
(2)/(1) <=> \(\frac{\left(x+10\right).\left(t-2\right)}{x.t}=1\Leftrightarrow\frac{x+10}{x}=\frac{t}{t-2}\Leftrightarrow\frac{10}{x}=\frac{2}{t-2}\)
\(\Leftrightarrow5\left(t-2\right)=x\)(*)
Thay (*) vào (2,3) rồi (2)/(3)
\(\Leftrightarrow\left[5\left(t-2\right)+10\right]\left(t-2\right)=\left[5\left(t-2\right)-10\right]\left(t+3\right)\)
\(\Leftrightarrow t=12\left(h\right)\)
\(\Leftrightarrow s_{ab}=5\left(12-2\right).12=600\left(km\right)\)