K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

Bài 1: 1 vật chuyển động tròn đều trên 1 quỹ đạo có bán kính R =2m, biết rằng gia tốc góc của vật biến thiên theo quy luật: \(\gamma=0,5+0,1t\left(rad/s^2\right)\) a/ Tìm biểu thức vận tốc góc của vật theo thời gian, từ đó tìm biểu thức vận tốc của vật theo thời gian b/ Tìm gia tốc theo thời gian c/ Tại t= 8s, tìm vận tốc góc, vận tốc dài, gia tốc và góc của vật đã quay được Bài 2: 2...
Đọc tiếp

Bài 1: 1 vật chuyển động tròn đều trên 1 quỹ đạo có bán kính R =2m, biết rằng gia tốc góc của vật biến thiên theo quy luật: \(\gamma=0,5+0,1t\left(rad/s^2\right)\)

a/ Tìm biểu thức vận tốc góc của vật theo thời gian, từ đó tìm biểu thức vận tốc của vật theo thời gian

b/ Tìm gia tốc theo thời gian

c/ Tại t= 8s, tìm vận tốc góc, vận tốc dài, gia tốc và góc của vật đã quay được

Bài 2: 2 vật dao đông điều hòa có cùng tần số góc là \(\omega\) . Tổng biên độ dao động của 2 vật là 10cm. Trong quá trình dao động tại thời điểm t, vật 1 có biên độ A1 qua vị trí x1 với vận tốc v1, vật 2 có biên độ A2 qua vị trí x2. Biết \(x_1v_2+x_2v_1=9\left(cm^2/s\right)\). Tìm \(\omega\)

Bài 3: Cho 3 vật dao động điều hòa cùng biên độ A= 4cm, với tần số f1,f2,f3. Biết rằng tại mọi thời điểm, li độ và vận tốc của các vật liên hệ bằng biểu thức \(\frac{x_1}{v_1}+\frac{x_2}{v_2}=\frac{x_3}{v_3}\) . Tại thời điểm t, các vật cách vị trí cân bằng của chúng những đoạn lần lượt là \(\left|x_1\right|=2\left(cm\right),\left|x_2\right|=3\left(cm\right),\left|x_3\right|\) . Tìm \(\left|x_3\right|\)

Ai giúp mình với ạ :<

3
14 tháng 7 2020

Bài 3:

Lại đạo hàm :<

Have: \(\left(\frac{x}{v}\right)'=\frac{x'v-v'x}{v^2}\)

Have also: \(\left\{{}\begin{matrix}v=x'\\v'=a=-\omega^2x\end{matrix}\right.\)

\(\Rightarrow\left(\frac{x}{v}\right)'=\frac{v^2+\omega^2x^2}{v^2}=1+\frac{x^2}{\frac{v^2}{\omega^2}}=1+\frac{x^2}{A^2-x^2}\)

Đạo hàm 2 vế theo thời gian biểu thức: \(\frac{x_1}{v_1}+\frac{x_2}{v_2}=\frac{x_3}{v_3}\) :

\(\left(1+\frac{x_1^2}{A_1^2-x_1^2}\right)+\left(1+\frac{x_2^2}{A_2^2-x_2^2}\right)=1+\frac{x_3^2}{A_3^2-x_3^2}\)

\(\Rightarrow1+\frac{x_1^2}{A_1^2-x_1^2}+\frac{x_2^2}{A_2^2-x_2^2}=\frac{x_3^2}{A_3^2-x_3^2}\Rightarrow\left|x_3\right|=3,4\left(cm\right)\)

14 tháng 7 2020

Bài 2:

\(Cauchy:A_1+A_2\ge2\sqrt{A_1A_2}\Leftrightarrow10\ge2\sqrt{A_1A_2}\Rightarrow A_1A_2\le25\)

Have: \(A_1A_2=\sqrt{x_1^2+\frac{v_1^2}{\omega^2}}.\sqrt{x_2^2+\frac{v_2^2}{\omega^2}}=\sqrt{\left(x_1^2+\frac{v_1^2}{\omega^2}\right)\left(x_2^2+\frac{v_2^2}{\omega^2}\right)}\)

\(Bunhiacopxki:\left(a_1^2+a_2^2\right)\left(b_1^2+b_2^2\right)\ge\left(a_1b_1+a_2b_2\right)^2\)

\(\Rightarrow\left(x_1^2+\frac{v_1^2}{\omega^2}\right)\left(x_2^2+\frac{v_2^2}{\omega^2}\right)\ge\left(x_1.\frac{v_2}{\omega}+x_2.\frac{v_1}{\omega}\right)^2\)

\(\Rightarrow A_1A_2\ge\left(x_1.\frac{v_2}{\omega}+x_2\frac{v_1}{\omega}\right)\Leftrightarrow25\ge\left(\frac{x_1.v_2+x_2v_1}{\omega}\right)\)

\(\Leftrightarrow x_1v_2+x_2v_1\le25\omega\Leftrightarrow9\le25\omega\)

\(\Rightarrow\omega\ge\frac{9}{25}=0,36\left(rad/s\right)\)

This exercise is hardest :<

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
25 tháng 2 2016

Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên

 

\(Z_L-\frac{Z_C}{2,5}=R\)

 

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì

 

\(Z_LZ_C=R^2+Z^2_L\)

 

\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)

 

Giải phương trình bậc 2 ta được

\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)

\(R=\frac{Z_L}{2}\)

 

Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền

 

Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)

 

\(\tan\alpha=\frac{R}{Z_L}=0,5\)

 

\(\sin\alpha=1\text{/}\sqrt{5}\)

 

\(U=U_C\sin\alpha=100V\)

 

\(U_o=U\sqrt{2}=100\sqrt{2}V\)

chọn C

25 tháng 2 2016

A

3 tháng 9 2017

Vtb=s/t với S=3A/2 :t=T/4+T/6=5T/12 => Vtb=18A/5T t nghĩ vậy

4 tháng 9 2017

Bạn suy luận đúng rồi.