Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)
Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)
Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:
\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)
Vậy số dãy ghế ban đầu của hội trường là 20 dãy
Gọi số dãy ghế ban đầu là: x ( 0 < x; x thuộc Z)
Mỗi ghế có y người (0 < y; y thuộc Z)
Vì có 80 người nên ta có x.y = 80 (1)
Nếu bớt 2 ghế thì còn x - 2 ghế. Khi đó mỗi ghế phải thêm 2 người nên có y + 2 người
Ta có PT: (x - 2)(y + 2) = 80 (2)
Giải hệ gồm PT (1) và (2) ta được x = 10; y = 8
Gọi số dãy ghế là x>2 và số người một dãy ghế là y>1
\(\Rightarrow\) Số người dự định: \(xy\)
Khi bớt 2 dãy ghế và mỗi ghế thêm 1 người thì số người ngồi: \(\left(x-2\right)\left(y+1\right)\)
Khi thêm 3 dãy ghế và mỗi dãy ghế bớt 1 người thì số người: \(\left(x+3\right)\left(y-1\right)\)
Theo bài ra ta có hệ: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy+8\\\left(x+3\right)\left(y-1\right)=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=10\\-x+3y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=5\end{matrix}\right.\)
Vậy có 20 dãy ghế
Gọi số hàng ghế lúc đầu là x (hàng) ĐK x > 0 và x thuộc N*
Số ghế trong mỗi hàng lúc đầu là 360/x (ghế)
Số hàng sau khi thêm là x+1
Số ghế trong mỗi hàng sau khi thêm là 360/x + 1
Tổng số chỗ ngồi sau thi thêm là 400 nên ta có phương trình:
(x+1).(360/x + 1) = 400
<=> x^2 - 39x + 360 = 0
∆= 81 nên x1=24; x2 = 15 cả hai giá trị này đều thỏa mãn ĐK.
Nếu số hàng ghế lúc đầu là 24 hàng thì số ghế trong mỗi hàng là 360:24 = 15 ghế
Nếu số hàng ghế lúc đầu là 15 hàng thì số ghế trong mỗi hàng là 360:15 = 24 ghế
mỗi hàng ghế có số ghế là x
có số hàng ghế là \(\frac{300}{x}\)
lúc sau mỗi hàng có số ghế là x+2
có số hàng ghế là \(\frac{300}{x}+1\)ta có pt:
\(\frac{300}{x}+1=\frac{357}{x+2}\)
\(300x+600+x^2+2x=357x\)
\(x^2-55x+600=0\)
\(\Delta= \left(-55\right)^2-\left(4.1.600\right)=625\)
\(\sqrt{\Delta}=25\)
\(x_1=\frac{55+25}{2}=35\left(KTM\right)\)
\(x_2=\frac{55-25}{2}=15\left(TM\right)\)
có số hàng ghế \(\frac{300}{15}=20\)( Hàng ghế )