Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,B=4\sqrt{x+1}-3\sqrt{x+1}+\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\\ b,B=8\Leftrightarrow4\sqrt{x+1}=8\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)
Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ
\(\Rightarrow\) Phương trình đã cho vô nghiệm
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
\(B=\sqrt{\dfrac{a+6}{a+1}}\) ( ĐK: \(a>-1;a\le-6\) )
\(\Rightarrow B^2=\dfrac{a+6}{a+1}=1+\dfrac{5}{a+1}\)
Với \(B\in Z\Rightarrow B^2\in Z\Leftrightarrow\dfrac{5}{a+1}\in Z\)
a) mà \(a\in Z\) nên \(a+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a+1=\pm1\\a+1=\pm5\end{matrix}\right.\)\(\Leftrightarrow a=0\) ,\(a=4\) hoặc \(a=-6\)
Tại \(a=0\Leftrightarrow B=\sqrt{6}\) (loại)
Tại \(a=4\Rightarrow B=\sqrt{2}\) (loại)
Tại \(a=-6\Rightarrow B=0\) (tm)
Vậy \(a=-6\)
b) Thay \(a=\dfrac{4}{9}\Rightarrow B=\dfrac{\sqrt{754}}{13}\)
Hm...
c) Đợi cao nhân. Đề này quá sức của thần.
khi bài toán bắt ta chứng minh một hình gì đó mà thiếu một ta hay một đường thẳng...
`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`
`=2/sqrt2=sqrt2`
`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`
`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`
`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`
`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`
`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`
`=(-2sqrt3)/sqrt2=-sqrt6`
`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`
`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`
`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`
`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`
`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`
`=(2sqrt3)/sqrt2=sqrt6`
`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`
`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`
`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`
`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`
`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`
`=2/sqrt2=sqrt2`
a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)
b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
a: Xét ΔABC vuông tại A có \(cosB=\dfrac{AB}{BC}=\dfrac{1}{2}\)
nên \(\widehat{B}=60^0\)
b:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=6^2-3^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{6}\)
=>\(\dfrac{AD}{1}=\dfrac{CD}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{1}=\dfrac{CD}{2}=\dfrac{AD+CD}{1+2}=\dfrac{3\sqrt{3}}{3}=\sqrt{3}\)
=>\(\left\{{}\begin{matrix}AD=\sqrt{3}\simeq1,7\left(cm\right)\\CD=2\sqrt{3}\simeq3,5\left(cm\right)\end{matrix}\right.\)
c: ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)
=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)
d: ΔABC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\left(1\right)\)
ΔADB vuông tại A có AE là đường cao
nên \(BE\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BH\cdot BC=BE\cdot BD\)
=>\(\dfrac{BH}{BD}=\dfrac{BE}{BC}\)
Xét ΔBHE và ΔBDC có
BH/BD=BE/BC
\(\widehat{HBE}\) chung
Do đó: ΔBHE đồng dạng với ΔBDC