K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 6 2021

Nếu đề là giải phương trình. Bài này có cách giải cơ bản như sau: 

\(3sin^2x-\frac{1}{2}sin2x+2cos^2x=0\)

\(\Leftrightarrow3sin^2x-sinxcosx+2cos^2x=0\)

\(cosx=0\)khi đó \(sin^2x=1\)suy ra \(3sin^2x-sinxcosx+2cos^2x=3\)không thỏa. 

\(cosx\ne0\): phương trình tương đương với: 

\(3\left(\frac{sinx}{cosx}\right)^2-\frac{sinx}{cosx}+2=0\)

\(\Leftrightarrow3tan^2x-tanx+2=0\)

\(\Delta=1-4.2.3< 0\)nên phương trình vô nghiệm. 

có hiệu lực từ ngày nào đó ._.

Phương án duy nhất : Cứ ib thẳng CTV nhờ xoá hộ chứ để đấy 10 đời cũng vẫn thế thoi á :")

20 tháng 10 2019

C.đc khí quyển hấp thụ.

ok bạn

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\). Tựa đầu bút chì vào...
Đọc tiếp

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).

Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\). Tựa đầu bút chì vào dây, di chuyển điểm M trên tấm bìa và giữ sao cho dây luôn căng, đoạn AM ép sát vào thước, khi đó M sẽ gạch lên tấm bìa một đường (H) (xem hình 6b)

a) Chứng tỏ rằng khi M di động, ta luôn có \(M{F_1} - M{F_2} = 2a\)

b) Vẫn đính một đầu dây vào đầu A của thước nhưng đổi chỗ cố định đầu dây còn lại vào \({F_1}\), đầu B của thước trùng với \({F_2}\) sao cho đoạn thẳng BA có thể quay quanh \({F_2}\)và làm tương tự như lần đầu để bút chì M vẽ được một nhánh khác của đường (H) (hình 6c). Tính \(M{F_2} - M{F_1}\)

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Khi điểm M trùng với điểm A ta có:

\(M{F_1} - M{F_2} = A{F_1} - A{F_2} = AB - A{F_2} = d - l = 2a\)

b) Tương tự khi điểm M trùng với điểm A ta có:

\(M{F_2} - M{F_1} = A{F_2} - A{F_1} = AB - A{F_1} = d - l = 2a\)

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây...
Đọc tiếp

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây khi đó là đường gấp khúc\(AM{F_2}\) , Cho thước quay quanh điểm B (trùng \({F_1}\)), tức là điểm A chuyển động trên đường tròn tâm B có bán kính bằng độ dài đoạn thẳng AB, mép thước luôn áp sát mặt gỗ (Hình 53). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường hypebol. Khi M thay đổi, có nhận xét gì về hiệu\(M{F_1} - M{F_2}\) ?

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khi M thay đổi, hiệu \(M{F_1} - M{F_2} = \left( {M{F_1} + MA} \right) - \left( {M{F_2} + MA} \right) = AB - l{\rm{ }}\)không đổi.

NV
6 tháng 7 2021

a. Các tập thỏa mãn là tập con chứa số 2 của \(\left\{2;3;4;5;6;7\right\}\)

Số tập này bằng số tập con của \(B=\left\{3;4;5;6;7\right\}\) là tập có 5 phần tử (tìm các tập con của B, sau đó với mỗi tập con tìm được ta thêm số 2 vào là được)

\(\Rightarrow\) Có \(2^5=32\) tập thỏa mãn 

(Câu a chỉ cần trình bày thế này, bỏ 2 chỗ ngoặc đơn đi là được)

b.

Tương tự, ta chỉ cần tìm tập con có 1 phần tử của \(\left\{3;4;5;6;7\right\}\)

\(\Rightarrow\) Có 5 tập thỏa mãn

Câu b có thể trình bày bằng cách liệt kê:

Các tập hợp thỏa mãn là: \(\left\{1;3\right\};\left\{1;4\right\};\left\{1;5\right\};\left\{1;6\right\};\left\{1;7\right\}\) có 5 tập thỏa mãn

(câu a có tới 32 tập nên chỉ cần biện luận, không nên liệt kê ra)

6 tháng 7 2021

Nếu như mình trình bày bài làm thì ghi sao cho đúng ạ ?

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi \(y = f(x) = a{x^2} + bx + c\) là công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ. 

Chọn hệ trục tọa độ Oxy như hình dưới:

Gọi S là đỉnh của parabol, dưới vị trí nhảy 1m.

A, B là các điểm như hình vẽ.

Dễ thấy: A (50; 45) và B (120+50; 0) = (170; 0).

Các điểm O, A, B đều thuộc đồ thị hàm số.

Do đó:

\(f(0) = a{.0^2} + b.0 + c = 0 \Leftrightarrow c = 0\)

\(f(50) = a{.50^2} + b.50 + c = 45 \Leftrightarrow a{.50^2} + b.50 = 45\)

\(f(170) = a{.170^2} + b.170 + c = 0 \Leftrightarrow a{.170^2} + b.170 = 0 \Leftrightarrow a.170+ b = 0\)

Giải hệ phương trình \(\left\{ \begin{array}{l}a{.50^2} + b.50 = 45\\a.170 + b = 0\end{array} \right.\) ta được \(a =  - \frac{{3}}{{400}};b = \frac{{51}}{{40}}\)

Vậy \(y = f(x) =  - \frac{{3}}{{400}}{x^2} + \frac{{51}}{{40}}x\)

Đỉnh S có tọa độ là \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - \frac{{51}}{{40}}}}{{2.\left( { - \frac{{3}}{{400}}} \right)}} = 85;\;{y_S} =  - \frac{{3}}{{400}}.8{5^2} + \frac{{51}}{{40}}.85 = \frac{{867}}{{16}} \approx 54,2\)

Khoảng cách từ vị trí bắt đầu nhảy đến mặt nước là: \(1 + 54,2 + 43 = 98,2(m)\)

Vậy chiều dài của sợi dây đó là: \(98,2:3  \approx 32,7\,(m)\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có chiều dài vòng dây là:

\(M{F_1} + {F_1}{F_2} + {F_2}M = 2a + 2c \Rightarrow M{F_1} + {F_2}M = 2a + 2c - {F_1}{F_2} = 2a\)

Vậy tổng khoảng cách \({F_1}M\) và \({F_2}M\) là 2a