K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Lời giải:

GTLN:

Áp dụng BĐT Cauchy-Schwarz:

\(B^2=(6\sqrt{x-1}+8\sqrt{3-x})^2\leq (6^2+8^2)(x-1+3-x)=200\)

\(\Rightarrow B_{\max}= 10\sqrt{2}\Leftrightarrow \frac{3}{\sqrt{x-1}}=\frac{4}{\sqrt{3-x}}\Leftrightarrow x=\frac{43}{25}\)

GTNN:

Ta biết một bổ đề sau: Với \(a,b\geq 0\Rightarrow \sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Cách CM rất đơn giản vì nó tương đương với \(\sqrt{ab}\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(\Rightarrow B\geq \sqrt{36x-36+192-64x}=\sqrt{156-28x}\geq 6\sqrt{2}\) (do \(x\leq 3\))

Vậy \(B_{\min}=6\sqrt{2}\Leftrightarrow x=3\)

26 tháng 8 2021

tìm minx max của biểu thức ạ

 

20 tháng 12 2021

\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{a}-\sqrt{b}\right)>=0\)(đúng)

21 tháng 12 2021

em cảm ơn :>>>

17 tháng 3 2021

Đặng Thị Lệ Quyên Chữ đẹp nhở:3