K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{-n3+1}{3n}=\frac{-3n+1}{3n}\)

Gọi d = ƯCLN( -3n + 1; 3n ). Ta có :

\(\hept{\begin{cases}-3n+1⋮d\\3n⋮d\end{cases}\Leftrightarrow-3n+1+3n⋮d\Leftrightarrow1⋮d}\)

Vậy \(d\in\left\{1;-1\right\}\), suy ra \(\frac{-n3+1}{3n}\) tối giản ( đpcm )

Gọi d = ƯCLN( -n + 14; 3n - 11). Ta có :

\(\hept{\begin{cases}-n+14⋮d\\3n-11⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n-42⋮d\\3n-11⋮d\end{cases}\Leftrightarrow}3n-42-3n+11⋮d\Leftrightarrow-31⋮d}\)

Vậy \(d\in\left\{1;31;-1;-31\right\}\), suy ra \(\frac{-n+14}{3n-11}\) tối giản ( đpcm )

25 tháng 2 2019

Gọi ƯCLN(n-5;3n-14) là d, Ta có :

 n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d      

=>(n-5)-(3n-14)=1 chia hết cho d

=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản

25 tháng 2 2019

k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

5 tháng 4 2019

UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản 

5 tháng 4 2019

Gọi d là UCLN ( 3n+5;n+2)

Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)

\(n+2⋮d\Rightarrow3\left(n+2\right)\)

                     hay \(3n+6⋮d\)

   ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)

                   \(\Rightarrow1⋮d\)

Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1

Chúc bạn hk tốt!!!

22 tháng 2 2017

a)gọi d là ƯCLN (3n-1;6n-3)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)

=> (6n-3)-(6n-2)\(⋮\)d

\(\Rightarrow1⋮d\)

=>d=1

\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)

b) Gọi d là ƯCLN(2n+11;3n+16)

\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d=1

Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)

Tớ giải xong rồi ai nhớ nha k cho tôi đi. 

3 tháng 1 2017

Gọi d là ƯCLN(15n+1,3n+1)

Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d

Hay (15n+1-3n+1) chia hết cho d

Hay 12 chia hết cho d

Hay d thuộc ước của 12

Ư(12)={1;2;3;4;6;12}

Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.

Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.

Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.

Kết luận:đề bài sai.

tk mình nha, mình rõ nhất

DD
9 tháng 3 2021

Đặt \(d=\left(2n+3,3n+5\right)\).

Ta có: \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)=1⋮d\).

Suy ra \(d=1\). Ta có đpcm.

22 tháng 3 2018

Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow\)\(\left(-3\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lại có : 

\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)

\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)

\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

ban oi ban co sai de ko


 

13 tháng 4 2018

a, gọi d là ƯCLN của tử và mẫu 

=> d =1 => câu a,b,c tối giản