\(2^{99}\)+\(2^{100}\))...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tui ra kết quả khác.

Tính nhanh:

\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3=8\)

25 tháng 5 2017

Giải:

\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=\left(2^3.2^{97}+2^3.2^{98}+2^3.2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)

\(=2^3\left[\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\right].\)

\(=2^3.1.\)

\(=2^3\left(=8\right).\)

~ Học tốt!!! ... ~ ^ _ ^

~ Nguồn: tự làm, không copy đây đó ... ~

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)

18 tháng 4 2018

 1x100/99x99/98x98/97x.....x3/2x2

 1x100

 100

18 tháng 4 2018

\(1:\frac{99}{100}:\frac{98}{99}:\frac{97}{98}:.........:\frac{2}{3}:\frac{1}{2}\)

\(=1.\frac{100}{99}.\frac{99}{98}.\frac{98}{97}......\frac{3}{2}.\frac{2}{1}\)

\(=\frac{1.100.99.98....3.2}{99.98.97......2.1}\)

\(=100\)

17 tháng 4 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)

\(=1-\frac{1}{99}=\frac{98}{99}< 1\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

Vậy \(\frac{49}{100}< A< 1\)

14 tháng 7 2016

1. a) 2B = 1 + 1/2 + 1/22+...+1/298

B - B = (1+1/2+...+1/298) - (1/2+....+1/299)

B = 1 - 299 => B < 1

b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)

14 tháng 7 2016

1. a). Theo đầu bài ta có:
 \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )