Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)
Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)
.............................
\(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)
Ta có:
\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)
mik cũng đang cần giải bài này ai piết thì giải giùm vs nha!
càng nhanh càng tốt
Đặt A=1/3-2/3^2+3/3^3-4/3^4+...+99/3^99+100/3^100
=>A<1/16
3A=1-2/3+3/3^2-4/3^3+...+99/3^98+100/3^99
=>3A-A=(1-2/3+3/3^2-4/3^3+...+99/3^98+100/3^99)-(1/3-2/3^2+3/3^3-4/3^4+...+99/3^99+100/3^100)
2A=5/3^2-7/3^3+1/3^99-100/3^100
2A=1/3^2(5-7/3+1/3^97-100/3^98)
A=1/18.(8/3+1/3^97-100/3^98)
A=1/54.(8+1/3^96-100/3^97)
Vì 1/54<1/16
=>A<1/16(đpcm)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )