Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có : \(\widehat{A_1}+\widehat{A_3}=180^o\) (kề bù)
\(100^o+\widehat{A_3}=180^o\)
\(\widehat{A_3}=80^o\)
Ta có: \(\widehat{A_3}=\widehat{B_1}=80^o\)
\(\widehat{A_3}\) và \(\widehat{B_1}\) ở vị trí đồng vị
\(\Rightarrow AC//BD\)
\(\Rightarrow\widehat{C}_1=\widehat{D_1}=135^o\) (đồng vị)
\(x=135^o\)
b)
Ta có: \(\widehat{G_1}+\widehat{B_1}=180^o\left(120^o+60^o=180^o\right)\)
\(\widehat{G_1}\) và \(\widehat{B_1}\) ở vị trí trong cùng phía
\(\Rightarrow QH//BK\)
\(\Rightarrow\widehat{H_1}=\widehat{K_1}=90^o\)(so le)
\(x=90^o\)
a) x = 135 (2 góc đồng vi)
b) x = 90 vì góc K và góc H là 2 góc trong cùng phía, tính chất của 2 góc trong cùng phía là bù nhau nên ta có: 180 - 90 = 90
a) Xét tam giác ABE và tam giác ACE có:
+ AE chung.
+ AB = AC (gt).
+ BE = CE (E là trung điểm của BC).
=> Tam giác ABE = Tam giác ACE (c - c - c).
b) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AE là đường trung tuyến (E là trung điểm của BC).
=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).
c) Xét tam giác ABC cân tại A có:
AE là phân giác ^BAC (cmt).
=> AE là đường cao (Tính chất các đường trong tam giác cân).
=> AE \(\perp\) BC.
Xét tam giác BIE và tam giác CIE:
+ IE chung.
+ BE = CE (E là trung điểm của BC).
+ ^BEI = ^CEI ( = 90o).
=> Tam giác BIE = Tam giác CIE (c - g - c).
Bài 4:
\(f\left(x\right)+x.f\left(-x\right)=x+1\) (*)
Thay \(x=1\) vào (*), ta có:
\(f\left(1\right)+1.f\left(-1\right)=1+1\Rightarrow f\left(1\right)+f\left(-1\right)=2\) (**)
Thay \(x=-1\) vào (*), ta có:
\(f\left(-1\right)+\left(-1\right).f\left(-\left(-1\right)\right)=-1+1\Rightarrow f\left(-1\right)-f\left(1\right)=0\) (***)
Trừ (**) và (***) vế theo vế, ta có:
\(\left(f\left(1\right)+f\left(-1\right)\right)-\left(f\left(-1\right)-f\left(1\right)\right)=2-0\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\)
\(\Rightarrow\left(f\left(1\right)+f\left(1\right)\right)+\left(f\left(-1\right)-f\left(-1\right)\right)=2\)
\(\Rightarrow2.f\left(1\right)=2\)
\(\Rightarrow f\left(1\right)=1\)