K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

a/ Để biểu thức có nghĩa thì: \(\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

b/ \(C=\frac{x}{2\left(x-1\right)}+\frac{x^2+1}{2\left(1-x^2\right)}=\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x+1\right)\left(x-1\right)}\)

       \(=\frac{x\left(x+1\right)-\left(x^2+1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\frac{x-1}{2\left(x-1\right)\left(x+1\right)}\)

         \(=\frac{1}{2\left(x+1\right)}\)

c/ Có: \(C=-\frac{1}{2}\Leftrightarrow\frac{1}{2\left(x+1\right)}=-\frac{1}{2}\Rightarrow\frac{1}{x+1}=-1\)

               \(\Rightarrow-x-1=1\Rightarrow-x=2\Rightarrow x=-2\)

          Vậy x = -2

4 tháng 12 2018

a, Để C có nghĩa thì \(\hept{\begin{cases}2x-2\ne0\\2-2x\ne0\end{cases}\Rightarrow}x\ne1\)

b, Với x khác 1 thì 

\(C=\frac{x}{2x-2}+\frac{x^2+1}{2-2x}=\frac{-x}{2-2x}+\frac{x^2+1}{2-2x}=\frac{x^2-x+1}{2-2x}\)

c, \(C=-0,5\Rightarrow\frac{x^2-x+1}{2-2x}=\frac{-1}{2}\)

\(\Rightarrow2\left(x^2-x+1\right)=\left(2-2x\right).\left(-1\right)\)

\(\Rightarrow2x^2-2x+2=-2+2x\)

\(\Rightarrow2x^2-2x+2+2-2x=0\)

\(\Rightarrow2x^2-4x+4=0\Rightarrow2\left(x^2-2x+2\right)=0\)

\(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)

Do đó: \(2\left(x^2-2x+2\right)>0\forall x\)

Vậy \(x\in\varnothing\)

11 tháng 12 2017

bài 1 :

tự làm

a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)

b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)

c: Thay x=2017 vào C, ta được:

\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)

5 tháng 3 2022

a, ĐKXĐ:\(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\1-x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x^2\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)

b, \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)

\(\Rightarrow C=\dfrac{x}{2\left(x-1\right)}+\dfrac{x^2+1}{2\left(1-x^2\right)}\)

\(\Rightarrow C=\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow C=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow C=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow C=\dfrac{1}{2\left(x+1\right)}\)

c, \(C=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x+1}=1\\ \Rightarrow x+1=1\\ \Rightarrow x=0\)

 

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(C=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)

c: Để C=1/2 thì 2x+2=2

hay x=0

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)a ) Tìm điều kiện của x để biểu thức A có nghĩa b ) Rút gọn biểu thứ A c ) Tìm giá trị của x khi A = 0Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\) a ) Tìm điều kiện của x để biểu thức B có nghĩa b ) Rút gọn biểu thứ B c ) Tìm giá trị của x khi B = 0Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)a ) Tìm x để biểu thức...
Đọc tiếp

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)

a ) Tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thứ A 

c ) Tìm giá trị của x khi A = 0

Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)\(\frac{9-3x}{x^2-9}\)

 

a ) Tìm điều kiện của x để biểu thức B có nghĩa 

b ) Rút gọn biểu thứ B 

c ) Tìm giá trị của x khi B = 0

Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)

a ) Tìm x để biểu thức A xác định 

b ) Rút gọn biểu thức A 

c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012

d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên 

Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)\(\frac{1}{x-1}\)\(\frac{2}{x^2-1}\)

a ) tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thức A 

C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên 

CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !

5
1 tháng 1 2017

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

1 tháng 1 2017

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

8 tháng 3 2020

 \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

a) Để A có nghĩa \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}}\Leftrightarrow x\ne\pm1\)

b) Ta có \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

\(\Rightarrow2A=\frac{x}{x-1}+\frac{x^2+1}{1-x^2}=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x-x^2-1}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)

\(\Rightarrow A=\frac{1}{2x+2}\)

KL...

c) Để \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1}{2x+2}=\frac{1}{2}\)

\(\Leftrightarrow2x+2=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(t/m ĐKXĐ)

KL...

25 tháng 12 2016

a, ĐKXĐ: x\(\ne\) 1;-1;2

b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)

=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{x-2}{x-1}\)

c, Khi x= -1

→A= \(\frac{-1-2}{-1-1}\)

= -3

Vậy khi x= -1 thì A= -3

Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^

26 tháng 12 2016

a,ĐKXĐ:x#1; x#-1; x#2

b,Ta có:

A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)

=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{x-2}{x+1}\)

c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả

d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên

\(\Leftrightarrow x-2⋮x+1\)

\(\Leftrightarrow x+1-3⋮x+1\)

\(x+1⋮x+1\Rightarrow3⋮x+1\)

\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)

Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)

Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên