K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(a,A=8\sqrt{27}-3\sqrt{75}-\sqrt{300}\)

\(A=\sqrt{3}\left(8\sqrt{9}-3\sqrt{25}-\sqrt{100}\right)=\sqrt{3}\left(24-15-10\right)=-\sqrt{3}\)

\(b,B=\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}+2}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)

\(B=\sqrt{3}+\sqrt{2}-\sqrt{2}-\sqrt{3}=0\)

\(C=3\left(a-2\right)+\sqrt{9a^2}-\sqrt{\frac{4a^2}{25}}+\sqrt{36}\)

\(C=3a-6+3a-\frac{2a}{5}+6\)

\(C=6a-\frac{2a}{5}=\frac{30a-2a}{5}=\frac{28a}{5}\)

16 tháng 11 2020

tui nhầm nha

1 tháng 12 2015

\(pt\Rightarrow x>0\)

\(pt\Leftrightarrow\sqrt{x^4-x^2+4}-\frac{25}{7}x+\sqrt{x^4-2x^2+4}-\frac{24}{7}x=0\)

\(\Leftrightarrow\frac{x^4-x^2+4-\left(\frac{25}{7}\right)x^2}{\sqrt{...}+\frac{25}{7}x}+\frac{x^4-2x^2+4-\left(\frac{24}{7}\right)x^2}{\sqrt{....}+\frac{24}{7}x}=0\)

\(\Leftrightarrow\left(x^4-\frac{674}{49}x^2+4\right)\left(\frac{1}{\sqrt{...}+\frac{25}{7}x}+\frac{1}{\sqrt{...}+\frac{24}{7}x}\right)=0\)

\(\Leftrightarrow x^4-\frac{674}{49}x^2+4=0\)

 

1 tháng 12 2015

Dễ thấy x =  0 ko là nghiệm của pt , chia cả hai vế cho x ta đc :

\(\sqrt{x^2-1+\frac{4}{x^2}}+\sqrt{x^2-2+\frac{4}{x^2}}=7\)

Đăỵ \(x^2+\frac{4}{x^2}-1=t\)

pt <=> \(\sqrt{t}+\sqrt{t-1}=7\) Giải pt ẩn t => ẩn x thay vào xem có tM ko rồi kl 

Câu 3:

2: Xét tứ giác OKEH có 

\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)

Do đó: OKEH là hình chữ nhật

mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)

nên OKEH là hình vuông

Bài 7:

2: Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{4}\cdot\left(-2\right)^2=\dfrac{1}{4}\cdot4=1\)

Thay x=4 vào (P), ta được:

\(y=\dfrac{1}{4}\cdot4^2=\dfrac{1}{4}\cdot16=4\)

Vậy: A(-2;1) và B(4;4)

Gọi (d): y=ax+b

Vì (d) đi qua điểm A(-2;1) và điểm B(4;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6a=-3\\4a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=4-4a=4-4\cdot\dfrac{1}{2}=4-2=2\end{matrix}\right.\)

Vậy: (d): \(y=\dfrac{1}{2}x+2\)

12 tháng 7 2021

1) \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)=\sqrt{\dfrac{4-2\sqrt{3}}{2}}\left(\sqrt{5}+\sqrt{2}\right)\)

\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{3}-1}{\sqrt{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{15}+\sqrt{6}-\sqrt{5}-\sqrt{2}}{\sqrt{2}}\)

theo mình nghĩ thì đề nên là \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)

như thế thì sẽ  \(=\dfrac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\) đẹp hơn,đó là mình nghĩ vậy thôi,còn nếu đề bạn đúng thì mình làm ở trên đó

2) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\dfrac{6-2\sqrt{5}}{2}}+\sqrt{\dfrac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{2}}=\dfrac{\sqrt{5}-1}{\sqrt{2}}+\dfrac{\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

3) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{5}+1\left(A\ge0\right)\)

4) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\dfrac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\dfrac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\dfrac{1}{2}\)

12 tháng 7 2021

Cảm ơn ban ạ yeu

30 tháng 4 2021

Câu 2: 

a, bạn tự vẽ được nhớ tìm tọa dộ nhé 

x      0       0

y      0       0 

b, Vì tung độ của điểm nằm trên P có hoành độ bằng 8 

=> x = 8

Thay x = 8 vào y = 1/2x^2 ta được : 

\(y=\dfrac{1}{2}.64=32\)

 

 

Bài 4: 

a) Ta có: \(B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1\)

\(=x+\sqrt{x}-2\sqrt{x}\)

\(=x-\sqrt{x}\)

16 tháng 7 2017

50 - 30 = 20 nha

TK MK NHA CÁC BẠN MK ĐG BỊ ÂM ĐIỂM

16 tháng 7 2017

số cần tìm là :

  50 - 30 = 20

          Đáp số :.........