Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (7x - 5y)2018 + (3x - 2z)2020 + (xy + yz + xz - 4500)2018 = 0
Ta có : \(\hept{\begin{cases}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+xz-4500\right)^{2018}\ge0\end{cases}}\)
\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+xz-4500\right)^{2018}\ge0\)
Dấu bằng xảy ra <=>
\(\begin{cases}7x=5y\\3x=2z\\xy+yz+xz=4500\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+xz=4500\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+xz=4500\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\x+y+z=4500\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)
=> xy + yz + xz = 4500
<=> 10k.14k + 14k.15k + 10k.15k = 4500
=> 140.k2 + 210.k2 + 150.k2 = 4500
=> k2.(140 + 210 + 150) = 4500
=> k2 . 500 = 4500
=> k2 = 9
=> k = \(\pm3\)
Nếu k = 3
=> \(\hept{\begin{cases}x=30\\y=42\\z=45\end{cases}}\)
Nếu k = - 3
=> \(\hept{\begin{cases}x=-30\\y=-42\\z=-45\end{cases}}\)
Lời giải:
Dễ thấy:
$|7x-5y|\geq 0$ với mọi $x,y$
$|2z-3x|\geq 0$ với mọi $x,z$
$|xy+yz+xz-2000|\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì:
$|7x-5y|=|2z-3x|=|xy+yz+xz-2000|=0$
\(\Rightarrow \left\{\begin{matrix} 7x=5y\\ 2z=3x\\ xy+yz+xz=2000\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\ xy+yz+xz=2000\end{matrix}\right.\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t; y=14t; z=15t\)
\(\Rightarrow 2000=xy+yz+xz=10t.14t+10t.15t+14t.15t\)
\(\Leftrightarrow 2000=500t^2\Rightarrow t^2=4\Rightarrow t=\pm 2\)
\(\Rightarrow (x,y,z)=(20; 28; 30); (-20; -28; -30)\)
Vậy.......
Lời giải:
Dễ thấy:
$|7x-5y|\geq 0$ với mọi $x,y$
$|2z-3x|\geq 0$ với mọi $x,z$
$|xy+yz+xz-2000|\geq 0$ với mọi $x,y,z$
Do đó để tổng của 3 số trên bằng $0$ thì:
$|7x-5y|=|2z-3x|=|xy+yz+xz-2000|=0$
\(\Leftrightarrow \left\{\begin{matrix} 7x=5y\\ 2z=3x\\ xy+yz+xz=2000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\ xy+yz+xz=2000(*)\end{matrix}\right.\)
Đặt $\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t; y=14t; z=15t$
Thay vào $(*)\Leftrightarrow 500t^2=2000\Rightarrow t=\pm 2$
$\Rightarrow (x,y,z)=(\pm 20,\pm 28, \pm 30)$
Bạn tham khảo câu hỏi tương tự tại đây nhé: Câu hỏi của David Santas.
Chúc bạn học tốt!
Ta có : \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2x-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)
=> 1 + |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| \(\ge1\)
=> \(\frac{1}{1+\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|}\le1\)
Dấu "=" xảy ra <=> 1 + |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| = 1
=> |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| = 0
=> \(\hept{\begin{cases}7x=5y\\2z=3x\\xy+yz+zx-2000=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+zy=2000\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+zy=2000\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=2000\left(1\right)\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta có :
10.14.k2 + 14.15.k2 + 10.15.k2 = 2000
=> 140k2 + 210.k2 + 150.k2 = 2000
=> k2(140 + 210 + 150) = 2000
=> k2.500 = 2000
=> k2 = 4
=> k2 = 22
=> \(k=\pm2\)
Nếu k = 2
=> x = 20 ; y = 28 ; z = 30
Nếu k = - 2
=> x = - 20 ; y = - 28 ; z = - 30
Vậy GTLN của M là 1 khi các 3 số (x ; y ; z) thỏa mãn là : (20 ; 28 ; 30) ; (- 20 ; - 28 ; - 30)
\(7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{5}.\frac{1}{2}=\frac{y}{7}.\frac{1}{2}\Rightarrow\frac{x}{10}=\frac{y}{14}\)
\(3x=2z\Rightarrow\frac{x}{2}=\frac{z}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{z}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{z}{15}\)
Do đó: \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t,y=14t,z=15t\)
Ta có: \(xy+yz+zx=2000\)
\(\Leftrightarrow\left(10t\right).\left(14t\right)+\left(14t\right).\left(15t\right)+\left(10t\right).\left(15t\right)=2000\)
\(\Rightarrow140t^2+210t^2+150t^2=2000\)
\(\Leftrightarrow500t^2=2000\Leftrightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Nếu t = 2 thì: \(x=10t=10.2=20\)
\(y=14t=14.2=28\)
\(z=15t=15.2=30\)
Nếu t = -2 thì: x = -20 , y = -28 và z = -30
Chúc bạn học tốt.