Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)m=0=>x^2-x+3=0<=>(x-1/2)^2+11/4=0` (Vô lí)
`=>m=0` ptr vô nghiệm
`b)` Ptr có nghiệm kép `<=>\Delta=0`
`<=>[-(2m+1)]^2-4(m^2+3)=0`
`<=>4m^2+4m+1-4m^2-12=0`
`<=>4m-11=0`
`<=>m=11/4`
`c)` Ptr có `2` nghiệm pb`<=>\Delta > 0`
`<=>4m-11 > 0<=>m > 11/4`
`d)` Ptr vô nghiệm `<=>\Delta < 0<=>4m-11 < 0<=>m < 11/4`
Bài 2:
a: Khi m=0 thì pt sẽ là:
\(x^2-x+3=0\)
=>\(x\in\varnothing\)
b: \(\Delta=\left(2m+1\right)^2-4\left(m^2+3\right)\)
=4m^2+4m+1-4m^2-12
=4m-11
Để pt có nghiệm kép thì 4m-11=0
=>m=11/4
c: Để phương trình có hai nghiệm pb thì 4m-11>0
=>m>11/4
d: Để pt vô nghiệm thì 4m-11<0
=>m<11/4
a: Khi m=1 thì hệ sẽ là x+y=1 và x-y=2
=>x=1,5; y=0,5
b: \(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m\left(1-y\right)-y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m-my-y=2m\end{matrix}\right.\)
=>x=1-y và y(-m-1)=m
=>x=1-y và y=-m/m+1
=>x=1+m/m+1=2m+1/m+1 và y=-m/m+1
Để x,y nguyên thì 2m+1 chia hết cho m+1 và -m chia hết cho m+1
=>\(m+1\in\left\{1;-1\right\}\)
=>\(m\in\left\{0;-2\right\}\)
\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)
Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)
\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)
Vậy \(x=2\)
\(2,ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)
\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)
Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)
Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy ...
Bài 1:
a: Thay x=9 vào B, ta được:
\(B=\dfrac{2\cdot3+1}{3+2}=\dfrac{7}{5}\)
b: \(P=A:B\)
\(=\dfrac{2\sqrt{x}+1}{x-1}\cdot\left(\sqrt{x}-1\right)\cdot\dfrac{x+2}{2\sqrt{x}+1}=\dfrac{x+2}{\sqrt{x}+1}\)
Câu I:
1) Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{x+\sqrt{x}-4}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x+x+\sqrt{x}-2-x-\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{x+2}{\sqrt{x}}\)
2) Để P=3 thì \(\dfrac{x+2}{\sqrt{x}}=3\)
\(\Leftrightarrow x+2=3\sqrt{x}\)
\(\Leftrightarrow x-3\sqrt{x}+2=0\)
\(\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\)
\(\Leftrightarrow\sqrt{x}\cdot\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: Để P=3 thì x=4
Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.
Câu h của em đây nhé
h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{2}\)
= -2
\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\\ \Leftrightarrow x-1=2+x+1+4\sqrt{x+1}\\ \Leftrightarrow4\sqrt{x+1}=-4\Leftrightarrow x\in\varnothing\left(4\sqrt{x+1}\ge0\right)\\ g,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2\\ \Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{2-2x}{2}=1-x\\ \Leftrightarrow\left|x-1\right|=1-x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1-x\left(x\ge1\right)\\x-1=x-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x\in R\end{matrix}\right.\)
1: ĐKXĐ: x<>3
\(\left\{{}\begin{matrix}\dfrac{2}{x-3}-3y=1\\\dfrac{3}{x-3}+2y=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4}{x-3}-6y=2\\\dfrac{9}{x-3}+6y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{x-3}=26\\\dfrac{2}{x-3}-3y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=\dfrac{13}{26}=\dfrac{1}{2}\\3y=\dfrac{2}{x-3}-1=2:\dfrac{1}{2}-1=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=1\end{matrix}\right.\left(nhận\right)\)
2:
a: Phương trình hoành độ giao điểm là:
\(x^2=\left(m+2\right)x-m\)
=>\(x^2-\left(m+2\right)x+m=0\)
\(\text{Δ}=\left(m+2\right)^2-4\cdot1\cdot m\)
\(=m^2+4m+4-4m\)
\(=m^2+4>=4>0\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Theo Vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=\left(m+2\right);x_1x_2=m\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{x_1+x_2-2}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{x_1+x_2-2}\)
=>\(\dfrac{m+2}{m}=\dfrac{1}{m+2-2}\)
=>\(m+2=1\)
=>m=-1(nhận)