K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

17 tháng 10 2016

A= 2006 X 2008 - 20072

A = 2006 . 2008 - 2007 . 2007

A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )

A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007

A = -1

B= 2016 X 2018 - 20172

B= 2016 . 2018 - 2017 . 2017

B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )

B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017

B = -1

17 tháng 10 2016

cảm ơn bạn nhé....

4.42:

a:=>x+y=0 và y-1=0

=>y=1 và x=-1

b: =>x-5=0 và 2y-7=0

=>x=5 và y=7/2

12 tháng 12 2021

undefined

30 tháng 12 2021

a: \(=\dfrac{x+2}{x+2}=1\)

b: \(=\dfrac{2x+6}{x+3}=2\)

Bài 13: 

a: Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(AD=DC=\dfrac{AC}{2}\)

mà AB=AC

nên AE=EB=AD=DC

Xét ΔAED có AE=AD

nên ΔADE cân tại A

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

c: Xét ΔABC có 

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

Bài 4: 

a) Ta có: AM+MB=AB

AN+NC=AC

mà MB=NC

và AB=AC

nên AM=AN

Xét ΔABC có 

\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)

nên MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang 

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b) Ta có: ΔABC cân tại A

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40^0}{2}=70^0\)

\(\Leftrightarrow\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)

Bài 3:

Ta có: ABCD là hình thang cân

nên AD=BC

mà AD=AB

nên BC=AB

Xét ΔBAC có BA=BC(cmt)

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)(hai góc ở đáy)

mà \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD

nên \(\widehat{BCA}=\widehat{DCA}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

16 tháng 8 2021

undefined

16 tháng 8 2021

\(x^2+2x+1=x^2+2\cdot1x+1^2=\left(x+1\right)^2\)

\(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)

\(\dfrac{4}{9}a^2-\dfrac{4}{3}a+1=\left(\dfrac{2}{3}a\right)^2-2\cdot\dfrac{2}{3}\cdot1a+1^2=\left(\dfrac{2}{3}a-1\right)^2\)

\(a^2+5a+\dfrac{25}{4}=a^2+2\cdot2,5a+2,5^2=\left(2,5+a\right)^2\)

9 tháng 8 2021

Bài 1:

a) (2x+5)(x-6)=2x2+5x-12x-30=2x2-7x-30

b) (2x-1)(x2-4x+3)=2x3-8x2+6x-x2+4x-3=2x3-9x2+10x-3

c) x2-2x-(x-7)(x+2)=x2-2x-x2+7x-2x+14=3x+14

d) 3x-(x+2)(x+4)=3x-x2-2x-4x-8=-x2-3x-8

9 tháng 8 2021

Bài 2:

a) 2(x+1)=x-1

⇒2x+2=x-1

⇒2x+2-x+1=0

⇒x+3=0

⇒x=-3

b) x(x+2)-x2=1

⇒x2+2x-x2=1

⇒2x=1

⇒x=0,5

c) 3x(x-2)=(3x-1)(x-1)-5

⇒3x2-6x=3x2-x-3x+1-5

⇒3x2-6x-3x2+x+3x-1+5=0

⇒-2x+4=0

⇒-2x=-4

⇒x=2

d) 6(x-1)(x-2)-6x(x+3)=2x

⇒6(x2-x-2x+2)-6x2-18x-2x=0

⇒6x2-6x-12x+12-6x2-18x-2x=0

⇒-38x+12=0

⇒-38x=-12

⇒x=\(\dfrac{6}{19}\)