K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

Câu 5:

\(P=\frac{2x+yz}{y+z}+\frac{2y+zx}{z+x}+\frac{2z+xy}{x+y}\left(x,y,z>0\right)\).

Ta có:

\(\frac{2x+yz}{y+z}=\frac{x\left(x+y+z\right)+yz}{y+z}\)(vì \(x+y+z=2\)).

\(\Rightarrow\frac{2x+yz}{y+z}=\frac{x\left(x+y\right)+xz+yz}{y+z}=\frac{x\left(x+y\right)+z\left(x+y\right)}{y+z}\)\(=\frac{\left(x+z\right)\left(x+y\right)}{y+z}\).

Chứng minh tương tự, ta được:

\(\frac{2y+zx}{z+x}=\frac{\left(x+y\right)\left(y+z\right)}{z+x}\).

Chứng minh tương tự, ta được:

\(\frac{2z+xy}{x+y}=\frac{\left(y+z\right)\left(z+x\right)}{x+y}\).

Do đó:

\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(z+x\right)\left(y+z\right)}{x+y}\).

Đặt \(x+y=a;y+z=b;z+x=c\left(a,b,c>0\right)\)thì \(a+b+c=2\left(x+y+z\right)=2.2=4\). Do đó:

\(P=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\).

\(a,b,c>0\) nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac.ab}{bc}}=2a\)\(\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow\frac{ac}{b}=\frac{ab}{c}\Leftrightarrow\frac{c}{b}=\frac{b}{c}\Leftrightarrow b=c>0\).

Chứng minh tương tự, ta được:

\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)\(\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).

Chứng minh tương tự, ta được:
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)\(\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\) , ta được:

\(\frac{ac}{b}+\frac{ab}{c}+\frac{ab}{c}+\frac{bc}{a}+\frac{bc}{a}+\frac{ac}{b}\ge2a+2b+2c\).

\(\Leftrightarrow2\left(\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\right)\ge2\left(a+b+c\right)\).

\(\Leftrightarrow\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\ge a+b+c\).

\(\Leftrightarrow P\ge4\)(vì \(a+b+c=4\)).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=y+z=z+x\\x,y,z>0\end{cases}}\Leftrightarrow x=y=z\)

Mà \(x+y+z=2\)nên \(x=y=z=\frac{2}{3}\).

Vậy \(minP=4\Leftrightarrow x=y=z=\frac{2}{3}\).
 

31 tháng 5 2021

Câu 3:

\(\frac{1}{3a+b}+\frac{2}{a+3b}=\frac{3}{2a+2b}\).

\(\Leftrightarrow\left[\frac{1}{3a+b}-\frac{1}{2\left(a+b\right)}\right]+2\left[\frac{1}{a+3b}-\frac{1}{2\left(a+b\right)}\right]=0\).

\(\Leftrightarrow\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(3a+b\right)}-\frac{3a+b}{2\left(a+b\right)\left(3a+b\right)}\right]\)\(+2\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(a+3b\right)}-\frac{a+3b}{2\left(a+b\right)\left(a+3b\right)}\right]=0\).

\(\Leftrightarrow\frac{2a+2b-3a-b}{2\left(a+b\right)\left(3a+b\right)}+2.\frac{2a+2b-a-3b}{2\left(a+b\right)\left(a+3b\right)}=0\).

\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)\left(3a+b\right)}+\frac{2\left(a-b\right)}{2\left(a+b\right)\left(a+3b\right)}=0\).

\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)}\left(\frac{1}{3a+b}-\frac{2}{a+3b}\right)=0\).

Vì \(0< a< b\)nên \(a+b>0;b-a>0\)\(\frac{b-a}{\left(a+b\right)}>0\Rightarrow\frac{b-a}{2\left(a+b\right)}>0\)\(\Rightarrow\frac{b-a}{2\left(a+b\right)}\ne0\). Lúc đó:

\(\frac{1}{3a+b}-\frac{2}{a+3b}=0:\frac{b-a}{2\left(a+b\right)}\).

\(\Leftrightarrow\frac{1}{3a+b}-\frac{2}{a+3b}=0\).

\(\Leftrightarrow\frac{a+3b}{\left(3a+b\right)\left(a+3b\right)}-\frac{2\left(3a+b\right)}{\left(3a+b\right)\left(a+3b\right)}=0\).

\(\Leftrightarrow\frac{a+3b-6a-2b}{\left(3a+b\right)\left(a+3b\right)}=0\).

\(\Leftrightarrow\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=0\).

Vì \(0< a< b\)nên \(3a+b>0;a+3b>0\)\(\Rightarrow\left(3a+b\right)\left(a+3b\right)>0\Rightarrow\left(3a+b\right)\left(a+3b\right)\ne0\).

Do đó:

\(\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=\frac{0}{\left(3a+b\right)\left(a+3b\right)}\).

\(\Rightarrow b-5a=0\Leftrightarrow b=5a\)(thỏa mãn \(0< a< b\)).

\(M=\frac{3}{3a+b}+\frac{2}{a+3b}-\frac{3}{a+b}\).

Thay \(b=5a\)vào \(M\), ta được:

\(M=\frac{3}{3a+5a}+\frac{2}{a+3.5a}-\frac{3}{a+5a}\).

\(M=\frac{3}{8a}+\frac{2}{16a}-\frac{3}{6a}=\frac{3}{8a}+\frac{1}{8a}-\frac{1}{2a}=\frac{1}{4a}-\frac{1}{2a}\).\(=\frac{1}{2a}-\frac{1}{2a}=0\)

Vậy \(M=0\).

12 tháng 12 2021

undefined

Câu 1: 

a: \(\Leftrightarrow6x^2-2x=6x^2-13\)

=>-2x=-13

hay x=13/2

b: \(\Leftrightarrow2x-2x-1=x-6x\)

=>-5x=-1

hay x=1/5

c: \(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^2+3\)

\(\Leftrightarrow x^2+3=x^2+2x+1-x^2+2x-1=4x\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=3(nhận) hoặc x=1(loại)

14 tháng 3 2022

Bài 4:

\(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+16x^2=0\)

\(\Leftrightarrow\left(x^2+x+4\right)^2+2.4x\left(x^2+x+4\right)+\left(4x\right)^2=0\)

\(\Leftrightarrow\left(x^2+x+4+4x\right)^2=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2+4x+x+4\right)^2=0\)

\(\Leftrightarrow\left[x\left(x+4\right)+x+4\right]^2=0\)

\(\Leftrightarrow\left(x+1\right)^2.\left(x+4\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\) hay \(\left(x+4\right)^2=0\)

\(\Leftrightarrow x=-1\) hay \(x=-4\)

-Vậy \(S=\left\{-1;-4\right\}\)

Bài 4: 

a) Xét ΔABC có 

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{AC}{2}\)

hay AC=2MN

b) Xét ΔABC có 

M là trung điểm của BC

MP//AB

Do đó: P là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: \(MP=\dfrac{AB}{2}\)

mà \(BN=\dfrac{AB}{2}\)

nên MP=BN

Xét tứ giác BMPN có 

MP//NB(cmt)

PM=NB(cmt)

Do đó: BMPN là hình bình hành

31 tháng 10 2021

\(4,=3x^2-3x+7x-7=\left(x-1\right)\left(3x+7\right)\\ 5,=4x^2-4xy+9xy-9y^2=\left(x-y\right)\left(4x+9y\right)\\ 6,=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

31 tháng 10 2021

1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)

2: \(x^2+3x-10=\left(x+5\right)\left(x-2\right)\)

3: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)

5 tháng 1 2022

4x2y3=2x2.2y2.y

6x3y2=2.3.x2y2.x

=> MTC= 2.2.3.x3y3=12x3y3

5 tháng 1 2022

4x2y3=2x2.2y2.y

6x3y2=2.3.x2y2.x

=> MTC= 2.2.3.x3y3=12x3y3

5 tháng 1 2022

Em coi cập nhật lại đề nha em!

5 tháng 1 2022

Em coi cập nhật lại đề nha em!

d: AC^2-KC^2=AK^2

AM^2-BH^2=AB^2-BH^2=AH^2

mà AH=AK

nên AC^2-KC^2=AM^2-BH^2

=>AC^2+BH^2=AM^2+KC^2