Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(\Leftrightarrow6x^2-2x=6x^2-13\)
=>-2x=-13
hay x=13/2
b: \(\Leftrightarrow2x-2x-1=x-6x\)
=>-5x=-1
hay x=1/5
c: \(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^2+3\)
\(\Leftrightarrow x^2+3=x^2+2x+1-x^2+2x-1=4x\)
\(\Leftrightarrow x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=3(nhận) hoặc x=1(loại)
Bài 4:
\(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+16x^2=0\)
\(\Leftrightarrow\left(x^2+x+4\right)^2+2.4x\left(x^2+x+4\right)+\left(4x\right)^2=0\)
\(\Leftrightarrow\left(x^2+x+4+4x\right)^2=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+4x+x+4\right)^2=0\)
\(\Leftrightarrow\left[x\left(x+4\right)+x+4\right]^2=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\) hay \(\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-1\) hay \(x=-4\)
-Vậy \(S=\left\{-1;-4\right\}\)
Bài 4:
a) Xét ΔABC có
M là trung điểm của BC
MN//AC
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{AC}{2}\)
hay AC=2MN
b) Xét ΔABC có
M là trung điểm của BC
MP//AB
Do đó: P là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: \(MP=\dfrac{AB}{2}\)
mà \(BN=\dfrac{AB}{2}\)
nên MP=BN
Xét tứ giác BMPN có
MP//NB(cmt)
PM=NB(cmt)
Do đó: BMPN là hình bình hành
\(4,=3x^2-3x+7x-7=\left(x-1\right)\left(3x+7\right)\\ 5,=4x^2-4xy+9xy-9y^2=\left(x-y\right)\left(4x+9y\right)\\ 6,=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)
2: \(x^2+3x-10=\left(x+5\right)\left(x-2\right)\)
3: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
4x2y3=2x2.2y2.y
6x3y2=2.3.x2y2.x
=> MTC= 2.2.3.x3y3=12x3y3
4x2y3=2x2.2y2.y
6x3y2=2.3.x2y2.x
=> MTC= 2.2.3.x3y3=12x3y3
d: AC^2-KC^2=AK^2
AM^2-BH^2=AB^2-BH^2=AH^2
mà AH=AK
nên AC^2-KC^2=AM^2-BH^2
=>AC^2+BH^2=AM^2+KC^2
Câu 5:
\(P=\frac{2x+yz}{y+z}+\frac{2y+zx}{z+x}+\frac{2z+xy}{x+y}\left(x,y,z>0\right)\).
Ta có:
\(\frac{2x+yz}{y+z}=\frac{x\left(x+y+z\right)+yz}{y+z}\)(vì \(x+y+z=2\)).
\(\Rightarrow\frac{2x+yz}{y+z}=\frac{x\left(x+y\right)+xz+yz}{y+z}=\frac{x\left(x+y\right)+z\left(x+y\right)}{y+z}\)\(=\frac{\left(x+z\right)\left(x+y\right)}{y+z}\).
Chứng minh tương tự, ta được:
\(\frac{2y+zx}{z+x}=\frac{\left(x+y\right)\left(y+z\right)}{z+x}\).
Chứng minh tương tự, ta được:
\(\frac{2z+xy}{x+y}=\frac{\left(y+z\right)\left(z+x\right)}{x+y}\).
Do đó:
\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(z+x\right)\left(y+z\right)}{x+y}\).
Đặt \(x+y=a;y+z=b;z+x=c\left(a,b,c>0\right)\)thì \(a+b+c=2\left(x+y+z\right)=2.2=4\). Do đó:
\(P=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\).
Vì \(a,b,c>0\) nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac.ab}{bc}}=2a\)\(\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{ac}{b}=\frac{ab}{c}\Leftrightarrow\frac{c}{b}=\frac{b}{c}\Leftrightarrow b=c>0\).
Chứng minh tương tự, ta được:
\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)\(\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).
Chứng minh tương tự, ta được:
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)\(\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\) , ta được:
\(\frac{ac}{b}+\frac{ab}{c}+\frac{ab}{c}+\frac{bc}{a}+\frac{bc}{a}+\frac{ac}{b}\ge2a+2b+2c\).
\(\Leftrightarrow2\left(\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\right)\ge2\left(a+b+c\right)\).
\(\Leftrightarrow\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\ge a+b+c\).
\(\Leftrightarrow P\ge4\)(vì \(a+b+c=4\)).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=y+z=z+x\\x,y,z>0\end{cases}}\Leftrightarrow x=y=z\)
Mà \(x+y+z=2\)nên \(x=y=z=\frac{2}{3}\).
Vậy \(minP=4\Leftrightarrow x=y=z=\frac{2}{3}\).
Câu 3:
\(\frac{1}{3a+b}+\frac{2}{a+3b}=\frac{3}{2a+2b}\).
\(\Leftrightarrow\left[\frac{1}{3a+b}-\frac{1}{2\left(a+b\right)}\right]+2\left[\frac{1}{a+3b}-\frac{1}{2\left(a+b\right)}\right]=0\).
\(\Leftrightarrow\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(3a+b\right)}-\frac{3a+b}{2\left(a+b\right)\left(3a+b\right)}\right]\)\(+2\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(a+3b\right)}-\frac{a+3b}{2\left(a+b\right)\left(a+3b\right)}\right]=0\).
\(\Leftrightarrow\frac{2a+2b-3a-b}{2\left(a+b\right)\left(3a+b\right)}+2.\frac{2a+2b-a-3b}{2\left(a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)\left(3a+b\right)}+\frac{2\left(a-b\right)}{2\left(a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)}\left(\frac{1}{3a+b}-\frac{2}{a+3b}\right)=0\).
Vì \(0< a< b\)nên \(a+b>0;b-a>0\)\(\frac{b-a}{\left(a+b\right)}>0\Rightarrow\frac{b-a}{2\left(a+b\right)}>0\)\(\Rightarrow\frac{b-a}{2\left(a+b\right)}\ne0\). Lúc đó:
\(\frac{1}{3a+b}-\frac{2}{a+3b}=0:\frac{b-a}{2\left(a+b\right)}\).
\(\Leftrightarrow\frac{1}{3a+b}-\frac{2}{a+3b}=0\).
\(\Leftrightarrow\frac{a+3b}{\left(3a+b\right)\left(a+3b\right)}-\frac{2\left(3a+b\right)}{\left(3a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{a+3b-6a-2b}{\left(3a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=0\).
Vì \(0< a< b\)nên \(3a+b>0;a+3b>0\)\(\Rightarrow\left(3a+b\right)\left(a+3b\right)>0\Rightarrow\left(3a+b\right)\left(a+3b\right)\ne0\).
Do đó:
\(\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=\frac{0}{\left(3a+b\right)\left(a+3b\right)}\).
\(\Rightarrow b-5a=0\Leftrightarrow b=5a\)(thỏa mãn \(0< a< b\)).
\(M=\frac{3}{3a+b}+\frac{2}{a+3b}-\frac{3}{a+b}\).
Thay \(b=5a\)vào \(M\), ta được:
\(M=\frac{3}{3a+5a}+\frac{2}{a+3.5a}-\frac{3}{a+5a}\).
\(M=\frac{3}{8a}+\frac{2}{16a}-\frac{3}{6a}=\frac{3}{8a}+\frac{1}{8a}-\frac{1}{2a}=\frac{1}{4a}-\frac{1}{2a}\).\(=\frac{1}{2a}-\frac{1}{2a}=0\)
Vậy \(M=0\).