K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5

=>DB=15cm; DC=20cm

b: Xét ΔCAB có DE//AB

nên DE/AB=CD/CB=CE/CA

=>CE/28=DE/21=20/35=4/7

=>CE=16cm; DE=12cm

a: BC=35cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)

Do đó:BD=15cm; CD=20cm

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/21=20/35=4/7

=>DE=12cm

Xét ΔABC cso DE//BC

nên CE/CA=ED/AB

=>CE/28=12/21=4/7

=>CE=12cm

7 tháng 3 2022

e tự vẽ hình nha

a) vì tg ABC vg tại A(gt)

\(\Rightarrow AB^2+AC^2=BC^2\left(pytago\right)\\ \Leftrightarrow28^2+21^2=BC^2\\ \Leftrightarrow BC=35\left(cm\right)\)

có AD là pgiac(gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{21}{28}\\ \Leftrightarrow\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}\)

\(+\dfrac{BD}{21}=\dfrac{35}{49}\Rightarrow BD=15\left(cm\right)\\ +\dfrac{CD}{28}=\dfrac{35}{49}\Rightarrow CD=20\left(cm\right)\)

b) xét tgiac ABC và tgac EDC có:

+ góc C chung

+ góc E = góc A (=90 độ)

+ góc D = góc B ( sltrong, DE//AB vì cùng vg góc AC)

\(\Rightarrow\Delta ABC\sim\Delta EDC\left(ggg\right)\\ \Rightarrow\dfrac{CB}{CD}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(\Leftrightarrow\dfrac{35}{20}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(+ED=\dfrac{20.21}{35}=12\left(cm\right)\\ +EC=\dfrac{28.20}{35}=16\left(cm\right)\)

c)  ở trên câu b a làm có luôn tam giác với tỉ số r đấy e chép xuống

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.a)Tính các đoạn EB, EC.b) Chứng minh:  SABE/SACE = AB/AC.c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.a)Hãy viết tỉ lệ thức trong trường hợp trên .b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức...
Đọc tiếp

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.

a)Tính các đoạn EB, EC.

b) Chứng minh:  SABE/SACE = AB/AC.

c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.

Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.

a)Hãy viết tỉ lệ thức trong trường hợp trên .

b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức trong trường hợp này.

c)Gọi BE là phân giác góc B , hãy viết tỉ lệ thức từ phân giác này .

d) Dựa vào các kết quả trên , chứng minh rằng: DB/DC. FB/FA. EA/EC = 1.

Bài 4. Cho tam giác ABC vuông tại A có AD là phân giác góc A . Kẻ DE // AC ( E  thuộc AB ). Biết AB = 21cm , AC = 28cm.

Tính độ dài các đoạn DB , DC và DE

Bài 5. Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .

 a)Chứng minh rằng: GE/GD = HF/HD

b) Xác định vị trí của GH và EF ?

 

0

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)

Vậy: BD=15cm; CD=20cm

5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

c: Xét ΔABC vuông tại A và ΔEDC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔABC∼ΔEDC

a: BC=35cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:BD=15cm; CD=20cm

21 tháng 2 2022

d) -BG, BI cắt AC lần lượt tại H,F.

-Xét △ABC có:

I, G lần lượt là giao các đường phân giác và trọng tâm (gt).

\(\Rightarrow\)BI, BG lần lượt là phân giác, trung tuyến của △ABC.

Mà -BI, BG cắt AC lần lượt tại F,H (gt).

AD phân giác \(\widehat{BAC}\) (D∈BC) (gt).

\(\Rightarrow\dfrac{BG}{BH}=\dfrac{2}{3}\); BF là phân giác của \(\widehat{ABC}\).

I∈AD.

-Xét △ABC có: BF là phân giác của \(\widehat{ABC}\) (cmt).

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AF}{FC}\) (định lí đường phân giác trong tam giác).

\(\Rightarrow\dfrac{AF}{AB}=\dfrac{FC}{BC}=\dfrac{AF+FC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{28}{21+35}=\dfrac{1}{2}\)

-Xét △ABF có: AI là phân giác của \(\widehat{BAC}\)

\(\Rightarrow\dfrac{AF}{AB}=\dfrac{IF}{BI}=\dfrac{1}{2}\) (định lí đường phân giác trong tam giác).

\(\Rightarrow IF=\dfrac{1}{2}BI\) mà \(IF+BI=BF\)

\(\Rightarrow\dfrac{1}{2}BI+BI=BF\)

\(\Rightarrow\dfrac{3}{2}BI=BF\)

\(\Rightarrow BI=\dfrac{2}{3}BF\)

-Xét △BFH có: \(\dfrac{BI}{BF}=\dfrac{BG}{BH}\left(=\dfrac{2}{3}\right)\)

\(\Rightarrow\)IG//FH (định lí Ta-let đảo) nên IG//AC