Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5
=>DB=15cm; DC=20cm
b: Xét ΔCAB có DE//AB
nên DE/AB=CD/CB=CE/CA
=>CE/28=DE/21=20/35=4/7
=>CE=16cm; DE=12cm
a: BC=35cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)
Do đó:BD=15cm; CD=20cm
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/21=20/35=4/7
=>DE=12cm
Xét ΔABC cso DE//BC
nên CE/CA=ED/AB
=>CE/28=12/21=4/7
=>CE=12cm
e tự vẽ hình nha
a) vì tg ABC vg tại A(gt)
\(\Rightarrow AB^2+AC^2=BC^2\left(pytago\right)\\ \Leftrightarrow28^2+21^2=BC^2\\ \Leftrightarrow BC=35\left(cm\right)\)
có AD là pgiac(gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{21}{28}\\ \Leftrightarrow\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}\)
\(+\dfrac{BD}{21}=\dfrac{35}{49}\Rightarrow BD=15\left(cm\right)\\ +\dfrac{CD}{28}=\dfrac{35}{49}\Rightarrow CD=20\left(cm\right)\)
b) xét tgiac ABC và tgac EDC có:
+ góc C chung
+ góc E = góc A (=90 độ)
+ góc D = góc B ( sltrong, DE//AB vì cùng vg góc AC)
\(\Rightarrow\Delta ABC\sim\Delta EDC\left(ggg\right)\\ \Rightarrow\dfrac{CB}{CD}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)
\(\Leftrightarrow\dfrac{35}{20}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)
\(+ED=\dfrac{20.21}{35}=12\left(cm\right)\\ +EC=\dfrac{28.20}{35}=16\left(cm\right)\)
c) ở trên câu b a làm có luôn tam giác với tỉ số r đấy e chép xuống
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)
Vậy: BD=15cm; CD=20cm
Bài 1 :
a, Xét tam giác BDA và tam giác KDC có:
Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
b,
Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)
Xét tam giác DBK và tam giác DAC có:
Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
Bài 2 :
a) Xét tam giác ABH và tam giác AHD có:
\(\widehat{A}chung\)
\(\widehat{AHB}=\widehat{ADH}=90^o\)
⇒ tam giác ABH đồng dạng với tam giác AHD (g-g)
b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)
⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)
Tam giác AEH đồng dạng với tam giác HEC
\(\widehat{ACH}=\widehat{AHE}\) (CM trên)
và \(\widehat{AEH}=\widehat{HEC}\) (= 900)
⇒\(\frac{AE}{HE}=\frac{EH}{EC}\)⇒\(AE\cdot EC=EH\cdot EH=EH^2\)
c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:
\(\widehat{A}\) chung
\(\widehat{ADC}=\widehat{AEB}=90^O\)
⇒ \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)
Xét tam giác DBM và tam giác ECM có:
\(\widehat{ACD}=\widehat{ABE}\) (CM trên)
\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)
⇒ tam giác DBM đồng dạng với tam giác ECM (g-g)
Bài 3 :
Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu
c: Xét ΔABC vuông tại A và ΔEDC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔABC∼ΔEDC
a: BC=35cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:BD=15cm; CD=20cm
d) -BG, BI cắt AC lần lượt tại H,F.
-Xét △ABC có:
I, G lần lượt là giao các đường phân giác và trọng tâm (gt).
\(\Rightarrow\)BI, BG lần lượt là phân giác, trung tuyến của △ABC.
Mà -BI, BG cắt AC lần lượt tại F,H (gt).
AD phân giác \(\widehat{BAC}\) (D∈BC) (gt).
\(\Rightarrow\dfrac{BG}{BH}=\dfrac{2}{3}\); BF là phân giác của \(\widehat{ABC}\).
I∈AD.
-Xét △ABC có: BF là phân giác của \(\widehat{ABC}\) (cmt).
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AF}{FC}\) (định lí đường phân giác trong tam giác).
\(\Rightarrow\dfrac{AF}{AB}=\dfrac{FC}{BC}=\dfrac{AF+FC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{28}{21+35}=\dfrac{1}{2}\)
-Xét △ABF có: AI là phân giác của \(\widehat{BAC}\)
\(\Rightarrow\dfrac{AF}{AB}=\dfrac{IF}{BI}=\dfrac{1}{2}\) (định lí đường phân giác trong tam giác).
\(\Rightarrow IF=\dfrac{1}{2}BI\) mà \(IF+BI=BF\)
\(\Rightarrow\dfrac{1}{2}BI+BI=BF\)
\(\Rightarrow\dfrac{3}{2}BI=BF\)
\(\Rightarrow BI=\dfrac{2}{3}BF\)
-Xét △BFH có: \(\dfrac{BI}{BF}=\dfrac{BG}{BH}\left(=\dfrac{2}{3}\right)\)
\(\Rightarrow\)IG//FH (định lí Ta-let đảo) nên IG//AC
-Tham khảo:
https://hoc24.vn/cau-hoi/giup-2-cau-cuoi-thoicho-dabc-tai-a-co-ab21cm-ac28cm-ad-phan-giac-bac-d-bcatinh-db-dcb-ke-de-ac-tinh-de-ecccm-dabcdedc-hay-tinh.4844365471752
-Chỉ thiếu câu b thôi nhé.