Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=0 và y=5 vào (d), ta được:
(m-2)x0+m=5
=>m=5
c: Để hai đườg song song thì m-2=2
hay m=4
Đề 1:
Bài 1:
\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)
Bài 2:
\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)
Bài 3:
\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)
ĐKXĐ: x>=0; x<>9
\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`=>(m+1)^2-m^2+2m-3 > 0`
`<=>m^2+2m+1-m^2+2m-3 > 0`
`<=>m > 1/2`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`
Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`
`=>1-4x_1.x_2+3(x_1.x_2)^2=0`
`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`
`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`
`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`
`=>` Không có `m` thỏa mãn.
Bài 2:
a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)
Để pt vô nghiệm thì -4m+16<0
=>m>4
Để phương trình co nghiệmduy nhất thì -4m+16=0
=>m=4
Để phương trình có hai nghiệm phân biệt thì -4m+16>0
=>m<4
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)
\(=4m^2-8m+4-4m^2+4m-4=-4m\)
Để pt vô nghiệm thì -4m<0
=>m>0
Để phương trình co nghiệmduy nhất thì -4m=0
=>m=0
Để phương trình có hai nghiệm phân biệt thì -4m>0
=>m<0
c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để pt vô nghiệm thì m^2-4<0
=>-2<m<2
Để phương trình co nghiệmduy nhất thì m^2-4=0
=>m=2 hoặc m=-2
Để phương trình có hai nghiệm phân biệt thì m^2-4>0
=>m>2 hoặc m<-2
Bài 17:
$a^2-2a(b+c)=b^2-2b(c+a)$
$\Leftrightarrow a^2-2ac=b^2-2bc$
$\Leftrightarrow (a^2-b^2)-(2ac-2bc)=0$
$\Leftrightarrow (a-b)(a+b-2c)=0$
$\Leftrightarrow a=b$ hoặc $a+b=2c$.
Nếu $a=b$. Thay vào đk $b^2-2b(c+a)=c^2-2c(a+b)$ thì:
$a^2-2a(c+a)=c^2-2c(a+a)$
$\Leftrightarrow -a^2-2ac=c^2-4ac$
$\Leftrightarrow a^2+c^2-2ac=0\Leftrightarrow (a-c)^2=0$
$\Leftrightarrow a=c$
Vậy $a=b=c\Rightarrow M=0$
Nếu $a+b=2c$
Khi đó ta có:
$a^2-2a(b+c)+b^2-2b(c+a)=2c^2-4c(a+b)$
$\Leftrightarrow a^2+b^2-4ab-2c(a+b)=2c^2-4c(a+b)$
$\Leftrightarrow (a+b)^2-6ab=2c^2-2c(a+b)=2c^2-2c.2c=-2c^2$
$\Leftrightarrow 4c^2-6ab=-2c^2$
$\Leftrightarrow 6ab=6c^2$
$\Leftrightarrow ab=c^2$
$\Leftrightarrow 4ab=4c^2=(2c)^2=(a+b)^2$
$\Leftrightarrow 4ab=a^2+b^2+2ab\Leftrightarrow (a-b)^2=0$
$\Leftrightarrow a=b$
Khi đó lại quay về TH1 và ta lại cm được $a=c$ nữa.
$\Rightarrow a=b=c\Rightarrow M=0$
Vậy $M=0$
Bài 18:
Đặt $\frac{a}{b-c}=x, \frac{b}{c-a}=y, \frac{c}{a-b}=z$.
Khi đó:
$xy+yz+xz=\frac{ab}{(b-c)(c-a)}+\frac{ac}{(b-c)(a-b)}+\frac{bc}{(c-a)(a-b)}=\frac{ab(a-b)+ac(a-c)+bc(b-c)}{(a-b)(b-c)(c-a)}=-1$
$N=(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})$
$=(x+y+z).\frac{xy+yz+xz}{xyz}=-\frac{x+y+z}{xyz}$
$=-[\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}]$
$=-[\frac{(b-c)(c-a)}{ab}+\frac{(c-a)(a-b)}{bc}+\frac{(b-c)(a-b)}{ac}]$
$=-\frac{c(b-c)(c-a)+a(c-a)(a-b)+b(b-c)(a-b)}{abc}$
$=\frac{a^3+b^3+c^3-ab(a+b)-bc(b+c)-ac(a+c)+3abc}{abc}$
$=\frac{a^3+b^3+c^3-ab(-c)-bc(-a)-ac(-b)-3abc}{abc}$
$=\frac{a^3+b^3+c^3+6abc}{abc}$
$=\frac{(a+b)^3-3ab(a+b)+c^3+6abc}{abc}=\frac{(-c)^3-3ab(-c)+c^3+6abc}{abc}$
$=\frac{-c^3+3abc+c^3+6abc}{abc}=\frac{9abc}{abc}=9$