K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6

Bài 17:

$a^2-2a(b+c)=b^2-2b(c+a)$
$\Leftrightarrow a^2-2ac=b^2-2bc$

$\Leftrightarrow (a^2-b^2)-(2ac-2bc)=0$

$\Leftrightarrow (a-b)(a+b-2c)=0$

$\Leftrightarrow a=b$ hoặc $a+b=2c$.

Nếu $a=b$. Thay vào đk $b^2-2b(c+a)=c^2-2c(a+b)$ thì:

$a^2-2a(c+a)=c^2-2c(a+a)$
$\Leftrightarrow -a^2-2ac=c^2-4ac$

$\Leftrightarrow a^2+c^2-2ac=0\Leftrightarrow (a-c)^2=0$
$\Leftrightarrow a=c$

Vậy $a=b=c\Rightarrow M=0$

Nếu $a+b=2c$

Khi đó ta có:

$a^2-2a(b+c)+b^2-2b(c+a)=2c^2-4c(a+b)$

$\Leftrightarrow a^2+b^2-4ab-2c(a+b)=2c^2-4c(a+b)$
$\Leftrightarrow (a+b)^2-6ab=2c^2-2c(a+b)=2c^2-2c.2c=-2c^2$

$\Leftrightarrow 4c^2-6ab=-2c^2$

$\Leftrightarrow 6ab=6c^2$

$\Leftrightarrow ab=c^2$

$\Leftrightarrow 4ab=4c^2=(2c)^2=(a+b)^2$

$\Leftrightarrow 4ab=a^2+b^2+2ab\Leftrightarrow (a-b)^2=0$

$\Leftrightarrow a=b$

Khi đó lại quay về TH1 và ta lại cm được $a=c$ nữa.

$\Rightarrow a=b=c\Rightarrow M=0$

Vậy $M=0$

AH
Akai Haruma
Giáo viên
23 tháng 6

Bài 18:

Đặt $\frac{a}{b-c}=x, \frac{b}{c-a}=y, \frac{c}{a-b}=z$.

Khi đó:

$xy+yz+xz=\frac{ab}{(b-c)(c-a)}+\frac{ac}{(b-c)(a-b)}+\frac{bc}{(c-a)(a-b)}=\frac{ab(a-b)+ac(a-c)+bc(b-c)}{(a-b)(b-c)(c-a)}=-1$

$N=(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})$

$=(x+y+z).\frac{xy+yz+xz}{xyz}=-\frac{x+y+z}{xyz}$

$=-[\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}]$

$=-[\frac{(b-c)(c-a)}{ab}+\frac{(c-a)(a-b)}{bc}+\frac{(b-c)(a-b)}{ac}]$

$=-\frac{c(b-c)(c-a)+a(c-a)(a-b)+b(b-c)(a-b)}{abc}$

$=\frac{a^3+b^3+c^3-ab(a+b)-bc(b+c)-ac(a+c)+3abc}{abc}$
$=\frac{a^3+b^3+c^3-ab(-c)-bc(-a)-ac(-b)-3abc}{abc}$

$=\frac{a^3+b^3+c^3+6abc}{abc}$

$=\frac{(a+b)^3-3ab(a+b)+c^3+6abc}{abc}=\frac{(-c)^3-3ab(-c)+c^3+6abc}{abc}$

$=\frac{-c^3+3abc+c^3+6abc}{abc}=\frac{9abc}{abc}=9$

a: Thay x=0 và y=5 vào (d), ta được:

(m-2)x0+m=5

=>m=5

c: Để hai đườg song song thì m-2=2

hay m=4

12 tháng 12 2021

Đề 1:

Bài 1:

\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)

Bài 2:

\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)

Bài 3:

\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)

23 tháng 9 2021

Chữ đẹp quá bạn ơi, không hiểu gì hết 

23 tháng 9 2021

Đây để em gửi lại

 C NHA BN CÂU 45 KO LÀM ĐC

ĐKXĐ: x>=0; x<>9

\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

6 tháng 3 2022

lỗi

6 tháng 3 2022

đăng lại đi

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

Bài 2:

a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)

Để pt vô nghiệm thì -4m+16<0

=>m>4

Để phương trình co nghiệmduy nhất thì -4m+16=0

=>m=4

Để phương trình có hai nghiệm phân biệt thì -4m+16>0

=>m<4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)

\(=4m^2-8m+4-4m^2+4m-4=-4m\)

Để pt vô nghiệm thì -4m<0

=>m>0

Để phương trình co nghiệmduy nhất thì -4m=0

=>m=0

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để pt vô nghiệm thì m^2-4<0

=>-2<m<2

Để phương trình co nghiệmduy nhất thì m^2-4=0

=>m=2 hoặc m=-2

Để phương trình có hai nghiệm phân biệt thì m^2-4>0

=>m>2 hoặc m<-2