K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a+b=1\)

=>a=1-b

\(\dfrac{a}{b^3-1}+\dfrac{b}{a^3-1}=\dfrac{1-b}{\left(b-1\right)\left(b^2+b+1\right)}+\dfrac{b}{\left(1-b\right)^3-1}\)

\(=\dfrac{-1}{b^2+b+1}+\dfrac{b}{\left(1-b-1\right)\left[\left(1-b\right)^2+1\left(1-b\right)+1\right]}\)

\(=\dfrac{-1}{b^2+b+1}+\dfrac{-1}{b^2-2b+1+1-b+1}\)

\(=\dfrac{-1}{b^2+b+1}+\dfrac{-1}{b^2-3b+3}=\dfrac{-b^2+3b-3-b^2-b-1}{\left(b^2+b+1\right)\left(b^2-3b+3\right)}\)

\(=\dfrac{-2b^2+2b-4}{\left(b^2+b+1\right)\left(b^2-3b+3\right)}\)

\(=\dfrac{-2b^2+2b-4}{b^4-3b^3+3b^2+b^3-3b^2+3b+b^2-3b+3}\)

\(=\dfrac{-2b^2+2b-4}{b^4-2b^3+b^2+3}\)(2)

\(\dfrac{2\left(ab-2\right)}{a^2b^2+3}\)

\(=\dfrac{2\left[b\left(1-b\right)-2\right]}{\left(1-b\right)^2b^2+3}=\dfrac{2\left[b-b^2-2\right]}{\left(b-b^2\right)^2+3}\)

\(=\dfrac{-2b^2+2b-4}{b^4-2b^3+b^2+3}\)(1)

Từ (1),(2) suy ra \(\dfrac{a}{b^3-1}+\dfrac{b}{a^3-1}=\dfrac{2\left(ab-2\right)}{a^2b^2+3}\)

a: Thay x=0 và y=5 vào (d), ta được:

(m-2)x0+m=5

=>m=5

c: Để hai đườg song song thì m-2=2

hay m=4

12 tháng 12 2021

Đề 1:

Bài 1:

\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)

Bài 2:

\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)

Bài 3:

\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)

23 tháng 9 2021

Chữ đẹp quá bạn ơi, không hiểu gì hết 

23 tháng 9 2021

Đây để em gửi lại

 C NHA BN CÂU 45 KO LÀM ĐC

ĐKXĐ: x>=0; x<>9

\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

6 tháng 3 2022

lỗi

6 tháng 3 2022

đăng lại đi

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

Bài 2:

a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)

Để pt vô nghiệm thì -4m+16<0

=>m>4

Để phương trình co nghiệmduy nhất thì -4m+16=0

=>m=4

Để phương trình có hai nghiệm phân biệt thì -4m+16>0

=>m<4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)

\(=4m^2-8m+4-4m^2+4m-4=-4m\)

Để pt vô nghiệm thì -4m<0

=>m>0

Để phương trình co nghiệmduy nhất thì -4m=0

=>m=0

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để pt vô nghiệm thì m^2-4<0

=>-2<m<2

Để phương trình co nghiệmduy nhất thì m^2-4=0

=>m=2 hoặc m=-2

Để phương trình có hai nghiệm phân biệt thì m^2-4>0

=>m>2 hoặc m<-2