Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MA^4+MB^4+MC^4+MD^4\)
\(=\left(MA^2+MC^2\right)^2+\left(MB^2+MD^2\right)^2-2MA^2.MC^2-2MB^2.MD^2\)
\(=32R^4-8S_{MAC}^2-8S_{MBD}^2\)
\(=32R^4-8R^2\left(MH^2+MK^2\right)\) với H,K lần lượt là hình chiếu vuông góc của M trên AC,BD
\(=32R^4-8R^2.R^2=24R^4\)
dạng này dễ mà bạn
bạn tìm ĐK, đối chiếu giá trị với ĐK thấy thỏa mãn rồi thay vô
toàn SCP nên tính cũng đơn giản:)
1) Thay x = 64 (TMĐK ) vào A, có :
A = \(\frac{\sqrt{64}}{\sqrt{64}-2}\)=\(\frac{4}{3}\)
Vậy A = \(\frac{4}{3}\)khi x = 64
2) Thay x = 36 ( TMĐK ) vào A, có
A =\(\frac{\sqrt{36}+4}{\sqrt{36}+2}\)=\(\frac{5}{4}\)
Vậy A =\(\frac{5}{4}\)khi x = 36
3) Thay x=9 (TMĐK ) vào A, có :
A= \(\frac{\sqrt{9}-5}{\sqrt{9}+5}\)= \(\frac{-1}{4}\)
Vậy A=\(\frac{-1}{4}\)khi x = 9
4) Thay x = 25( TMĐK ) vào A có:
A =\(\frac{2+\sqrt{25}}{\sqrt{25}}\)=\(\frac{7}{5}\)
Vậy A=\(\frac{7}{5}\) khi x = 25
P1 = (\(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{\sqrt{x}}{x+\sqrt{x}}\)= \(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\):\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)=\(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\).
(\(\sqrt{x}+1\)) =\(\frac{x+\sqrt{x}+1}{\sqrt{x}}\)(ĐKXĐ : x > 0 )
P2 =\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)= \(\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)= \(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
(ĐKXĐ: x\(\ge\)0, x\(\ne\)1)
a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)
\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)
\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)
d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)
\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)