Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C nhé, dựa vào phương trình sóng tổng quát: x = A cos(wt - 2pi.d/lamda)
\(\omega^2=\frac{g}{\Delta l}\Rightarrow\Delta l=0,04m=4\left(cm\right)\)
Lực đàn hồi min khi tại vị trí lò xo ko dãn, nghĩa là ở vị trí delta l=- 4cm
\(2020=1009.2+2\)
\(\Rightarrow\Delta t=1009T+\frac{T}{2}=...\left(s\right)\)q
Giả sử cuộn dây không thuần cảm, có điện trở r.
Giả thiết có vẻ thiếu gì đó, bạn kiểm tra lại xem. Hoặc chỉ cần vẽ giản đồ véc tơ thì thấy cuộn dây không thuần cảm vẫn OK.
Zc Z Z r R d m L Z
BONUS thêm bạn cách biến đổi đại số
Ta có Im = Id suy ra Zm = Zđ \(\Leftrightarrow R^2+Z_C^2=\left(R+r\right)^2+\left(Z_L-Z_C\right)^2\)(*)
id sớm pha \(\frac{\pi}{2}\)so với im nên \(\tan\varphi_đ\tan\varphi_m=-1\Leftrightarrow\frac{-Z_C}{R}.\frac{Z_L-Z_C}{R+r}=-1\)
\(\Rightarrow Z_L-Z_C=\frac{R\left(R+r\right)}{Z_C}\)(**)
Thế vào (*) ta có: \(R^2+Z_C^2=\left(R+r\right)^2+\left(R+r\right)^2\frac{R^2}{Z_C^2}\)
\(\Leftrightarrow R^2+Z_C^2=\left(R+r\right)^2\frac{R^2+Z_C^2}{Z_C^2}\Leftrightarrow R+r=Z_C\)(1)
Thế vào (**) ta đc: \(Z_L-Z_C=R\) (2)
Hai phương trình (1) và (2) vẫn chưa thể kết luận r = 0.
W = 2pi/T = can(k/m)
=>T = 2pi.can(m/k)
MG = k(l-lo)
=>M/K=(l-lo)/g
=>T = 2pi.can((l-lo)/g)
=> Chọn B.T=2πl−log−−−√
−−√
Đề bài thế này thì tổng hợp gần hết các dạng cơ bản của dao động điều hòa luôn r còn đâu :)
1/ \(v=-\omega A\sin\frac{\pi}{3}=-2\pi.5.\frac{\sqrt{3}}{2}=-5\pi\sqrt{3}\left(cm/s\right)\)
Ủa phương trình li độ x là như nào vậy? Như này ạ:\(x=5\cos\left(2\pi t-\frac{2\pi}{3}\right)?\)
2/ Câu này chả rõ ràng gì, ua li độ x=2,5 căn 3 theo chiều dương hay âm thì mới xác định được vận tốc dương hay âm chứ :(
\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow v=\omega\sqrt{A^2-x^2}=...\left(cm/s\right)\)
3/ \(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\frac{2\pi}{3}=-2,5\left(cm\right)\\v=-\omega A\sin\frac{2\pi}{3}< 0\end{matrix}\right.\) => Vật chuyển động theo chiều âm
Thời gian vật đi từ VTCB đến li độ \(x=-2,5\sqrt{3}\) là:
\(\Delta t_1=\frac{1}{\omega}.arc\sin\left(\frac{2,5\sqrt{3}}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
Thời gian vật đi từ VTCB đến li độ x=-2,5 là:
\(\Delta t_2=\frac{1}{\omega}arc\sin\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{6}=\frac{1}{12}\left(s\right)\)
\(\Rightarrow\sum t=\Delta t_1-\Delta t_2=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}\left(s\right)\)
4/\(\Delta t_1=2019.T=2019.1=2019\left(s\right)\)
\(\Delta t_2=\frac{1}{\omega}.arc\cos\left(\frac{2,5}{5}\right)=\frac{1}{2\pi}.\frac{\pi}{3}=\frac{1}{6}\left(s\right)\)
\(\Delta t_3=\frac{T}{2}-\frac{1}{2\pi}arc\cos\left(\frac{2}{5}\right)=\frac{1}{2}-\frac{1}{2\pi}\frac{11}{30}\pi=\frac{19}{60}\left(s\right)\)
\(\sum t=\Delta t_1+\Delta t_2+\Delta t_3=...\)
5/ \(x=5\cos\left(2.1,125\pi-\frac{2\pi}{3}\right)\approx1,3\left(cm\right)\)
6/ \(\frac{\Delta t_2}{T}=1,25\Rightarrow\Delta t_2=T+\Delta t\Rightarrow\sum S=S_1+S_2=4A+S_2\)
\(t_1=0\Rightarrow\left\{{}\begin{matrix}x_1=-2,5\\v_1< 0\end{matrix}\right.;t_2=1,25\Rightarrow\left\{{}\begin{matrix}x_2=\frac{5\sqrt{3}}{2}\\v>0\end{matrix}\right.\)
\(\Rightarrow S_2=\frac{A}{2}+A+\frac{5\sqrt{3}}{2}=...\Rightarrow\sum S=...\)
7/ \(x=2,5\Rightarrow25=2,5^2+\frac{v^2}{4\pi^2}\Rightarrow v=2\pi\sqrt{25-2,5^2}=\pm5\pi\sqrt{3}\left(cm/s\right)\Rightarrow W_d=\frac{1}{2}mv^2=....\left(J\right)\)
8/ \(v_{tb}=\frac{S_{tb}}{t}\) Stb là uãng đường đi được trong 2,5s
Lười úa :( Tìm uãng đường đi trong 2,5s như câu 6 thui, chị tự làm nhé, có gì ko hiểu hỏi em
Bài này rất cơ bản mà bạn.
a) \(Z_L=\omega.L=30\Omega\)
\(Z_C=\dfrac{1}{\omega C}=60\Omega\)
Tổng trở: \(Z=\sqrt{R^2+(Z_L-Z_C)^2}=\sqrt{40^2+(60-30)^2}=50\Omega\)
b) Điện áp hiệu dụng của mạch là: \(U=\dfrac{U_0}{\sqrt 2}=110(V)\)
Cường độ hiệu dụng: \(I=\dfrac{U}{Z}=\dfrac{110}{50}=2,2A\)
c) Công suất tiêu thụ của đoạn mạch: \(P=I^2.R=2,2^2.40=193,6W\)