Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a) \(\frac{-x^2y^5}{-x^2y^5}=1\)
b)\(\frac{-\left(x^7y^5z\right)^2}{-\left(xy^3z\right)^2}=\frac{x^{14}y^{10}z^2}{x^2y^6z^2}=x^7.y^4\)Thế vào ta được 1.(-10)^4=10000 cái khi nãy làm lộn
câu a cả tử và mẫu đều giống nhau nên kết quả là 1
b) chia ra ta được x6y2. Thế vào thì ra 1.102=100
\(1,\) Ta có \(2022\equiv1\left(mod47\right)\)
\(\Rightarrow2022^{2021}\equiv1\left(mod47\right)\)
Vậy \(2022^{2021}:47\) dư 1
\(2,\) Thay \(x=1\) vào nhị thức, ta được \(\left(5x-6\right)^{2021}=\left(-1\right)^{2021}=-1\)
Vậy tổng các hệ số là \(-1\)
\(1,\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Đặt \(a+b-2c=x;b+c-2a=y;c+a-2b=z\Leftrightarrow z=x+y\), pt trở thành:
\(x^3+y^3+z^3\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3\\ =-z^3-3xy\left(-z\right)+z^3\\ =3xyz\\ =3\left(a+b-2c\right)\left(b+c-2a\right)\left(a+c-2b\right)\)
\(2,\left(a+b+c\right)^3+\left(a-b-c\right)^3+\left(b-c-a\right)^3+\left(c-a-b\right)^3\\ =8a^3-3\left(a+b+c\right)\left(a-b-c\right)\cdot2a-8a^3-3\left(b-c-a\right)\left(c-a-b\right)\left(-2a\right)\\ =-6a\left\{a^2-\left(b+c\right)^2-\left[\left(-a\right)^2-\left(b-c\right)^2\right]\right\}\\ =-6a\left[a^2-a^2+\left(b-c\right)^2-\left(b+c\right)^2\right]\\ =-6a\left(b-c+b+c\right)\left[b-c-\left(b+c\right)\right]=24abc\)
a(b+1)+b(a+1)=(a+1)(b+1)
<=>ab+a+ab+b=ab+a+b+1
<=>ab+a+ab+b-ab-a-b=1
<=>ab=1 (đpcm)