Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\sqrt{2x-1}-4x+2=0\)0
\(\Leftrightarrow x\sqrt{2x-1}-2\left(2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(x-2\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=0\\x-2\sqrt{2x-1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\sqrt{2x-1}\left(1\right)\end{cases}}\)
+) giải phương trình (1) ta có
\(x=2\sqrt{2x-1}\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4-2\sqrt{3}\\x=4+2\sqrt{3}\end{cases}}\)
Vậy phương trình đã cho có 3 nghiệm là \(x=\frac{1}{2};x=4+2\sqrt{3};x=4-2\sqrt{3}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow t^2=2x-1\Rightarrow x=\frac{t^2+1}{2}\)
Vậy pt đã cho \(\Leftrightarrow\frac{t^2+1}{2}\cdot t=2t^2\\ \Leftrightarrow t^3+t-4t^2=0\Rightarrow t\left(t^2-4t+1\right)=0\)
\(t=0\Rightarrow x=\frac{1}{2}\left(tm\right)\)
\(t^2-4t+1=0\Rightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
\(t=2-\sqrt{3}\Rightarrow2x-1=7-4\sqrt{3}\Rightarrow2x=8-4\sqrt{3}\\ \Rightarrow x=4-2\sqrt{3}\)
\(t=2+\sqrt{3}\Rightarrow2x-1=7+4\sqrt{3}\Rightarrow2x=8+4\sqrt{3}\\ \Rightarrow x=4+2\sqrt{3}\)
Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1
Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)
<=> \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
<=> \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)
Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm
Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)
Vậy pt có 1 nghiệm x= 1.
Ta giải pt bậc ba theo công thức Cardano:
\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)
Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)
\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)
Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)
Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)
Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.
Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.
\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)
Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.
a: \(\Leftrightarrow\sqrt{6}\left(x+1\right)=5\sqrt{6}\)
=>x+1=5
=>x=4
b: =>x^2/10=1,1
=>x^2=11
=>x=căn 11 hoặc x=-căn 11
c: =>(4x+3)/(x+1)=9 và (4x+3)/(x+1)>=0
=>4x+3=9x+9
=>-5x=6
=>x=-6/5
d: =>(2x-3)/(x-1)=4 và x-1>0 và 2x-3>=0
=>2x-3=4x-4 và x>=3/2
=->-2x=-1 và x>=3/2
=>x=1/2 và x>=3/2
=>Ko có x thỏa mãn
e: Đặt căn x=a(a>=0)
PT sẽ là a^2-a-5=0
=>\(\left[{}\begin{matrix}a=\dfrac{1+\sqrt{21}}{2}\left(nhận\right)\\a=\dfrac{1-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)
=>x=(1+căn 21)^2/4=(11+căn 21)/2
a/ Đặt \(\sqrt[3]{x+5}=a\); \(\sqrt[3]{x+6}=b\)
Từ đó PT <=> a + b = \(\sqrt[3]{a^3+b^3}\)
<=> a3 + b3 + 3ab(a+b) = a3 + b3
<=> 3ab(a+b) = 0
<=> a = 0 hoặc b = 0
Thế vào giải ra là tìm được nghiệm
ĐK \(x^2-4x-5\ge0\)
Phương trình \(\Leftrightarrow2\left(x^2-4x-6\right)-3\sqrt{x^2-4x-5}=0\)
Đặt \(\sqrt{x^2-4x-5}=t\ge0\Rightarrow x^2-4x-5=t^2\Rightarrow x^2-4x-6=t^2-1\)
\(\Rightarrow2\left(t^2-1\right)-3t=0\Leftrightarrow2t^2-3t-2=0\Leftrightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=-\frac{1}{2}\left(l\right)\end{cases}}\)
Với \(t=2\Rightarrow x^2-4x-5=4\Rightarrow x^2-4x-9=0\Rightarrow\orbr{\begin{cases}x=2+\sqrt{13}\\x=2-\sqrt{13}\end{cases}}\)
Vậy phương trình có 2 nghiệm \(x=2+\sqrt{13}\)hoặc \(x=2-\sqrt{13}\)
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
ĐKXĐ: ...
\(x^2-4x+21=6\sqrt{2x+3}\)
\(\Leftrightarrow x^2-6x+9+2x+3-6\sqrt{2x+3}+9=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{2x+3}-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)