K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

a) \(A=\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)

b) \(B=\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{\left(\sqrt{ab}-1\right)\left(1+\sqrt{ab}\right)}=\dfrac{\left(1+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}-1}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)

15 tháng 9 2021

c) \(C=\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}=1-\sqrt{x}+x\)

d) \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

e) \(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{2-\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{2-\sqrt{x}}=\sqrt{x}+2+2+\sqrt{x}=2\sqrt{x}+4\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)

Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)

Do đó:

\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)

\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)

\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)

............

\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)

Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$

Vậy..........

1 tháng 4 2020

\(a,x^2+4x=-3\Leftrightarrow x^2+4x+3=0\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

\(b,3x^2+4x-4=0\Leftrightarrow3x^2+6x-2x-4=0\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=-2\\3x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\)

\(c,x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\)

\(d,x^2-6x=-9\Leftrightarrow x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

2 tháng 4 2020

cảm ơn thần đồng toán hc nhen

25 tháng 10 2023

Sửa đề: ΔABC cân tại A

a: Sửa đề: AB là trung bình nhân của AE và AH

CF//BH

CF\(\perp\)AB

Do đó: BA\(\perp\)BH

=>ΔBAH vuông tại B

Xét ΔBAH vuông tại B có BE là đường cao

nên \(AE\cdot AH=AB^2\)

=>\(AB=\sqrt{AE\cdot AH}\)

=>AB là trung bình nhân của AE và AH

b: Từ C, kẻ CG\(\perp\)CB, \(G\in AB\)

ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

Xét ΔBCG có

D là trung điểm của BC

DA//CG

Do đó: A là trung điểm của BG

Xét ΔBCG có D,A lần lượt là trung điểm của BC,BG

=>DA là đường trung bình

=>CG=2DA

=>4DA^2=CG^2

Xét ΔCBG vuông tại C có CF là đường cao

nên \(\dfrac{1}{CF^2}=\dfrac{1}{CG^2}+\dfrac{1}{CB^2}\)

=>\(\dfrac{1}{CF^2}=\dfrac{1}{4DA^2}+\dfrac{1}{CB^2}\)