\(\sqrt{-m}.\sqrt{-m}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Mình thấy có phân biệt gì giữa hàm đa thức và phân thức đâu bạn.

Theo định nghĩa thì hàm đạt cực trị tại y'=0; đồng biến khi y' > 0 và nghịch biến khi y' < 0.

Cách làm bài hàm bậc 3 ở trên là chưa chính xác.

17 tháng 6 2021

Với hàm đa thức thì xét y’>=0 nhé bạn, có khác nhau đất

10 tháng 9 2020

Đặt t=cotx, t>0

Ta có: y=\(\frac{t+1}{10t+m}\)

\(\Rightarrow y'=\frac{m-10}{\left(10t+m\right)^2}\)

Để hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)mà hàm số t lại nghịch biến trên \(\left(0;\frac{\pi}{2}\right)\)thì m-10<0

\(\Leftrightarrow m< 10\)

Lại có điều kiện để hàm số xác định: 10t+m\(\ne0\) \(\Leftrightarrow10t\ne-m\)\(\Leftrightarrow-10t\ne m\)

Mà t>0 \(\Rightarrow-10t< 0\:\Rightarrow m\ge0\)

Vậy \(0\le m< 10\) thì hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)

Không hiểu thì bạn hỏi lại mình nha ><

NV
10 tháng 9 2020

Đặt \(cotx=t\) \(\Rightarrow t>0\)

Ta thấy rằng khi x tăng trên \(\left(0;\frac{\pi}{2}\right)\) thì t giảm trên \(\left(0;+\infty\right)\)

Do đó hàm \(y=\frac{cotx+1}{10cotx+m}\) tăng trên \(\left(0;\frac{\pi}{2}\right)\Leftrightarrow y=\frac{t+1}{10t+m}\) giảm trên \(\left(0;+\infty\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y'=\frac{m-10}{\left(10t+m\right)^2}< 0\\-\frac{m}{10}\notin\left(0;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 10\\-\frac{m}{10}\le0\end{matrix}\right.\) \(\Leftrightarrow0\le m< 10\)

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

Cho hàm số \(y=x^4-2m^2x^2+2m^2-m\)(với m là tham số) Xác định m để đồ thị hàm số đã cho có ba điểm cực trị là ba đỉnh của một tam giác có chu vi bằng \(2\left(1+\sqrt{2}\:\right)\) ............................................................................. Cách của em như sau ạ, mong chị và mọi người hướng dẫn em với: \(y=x^4-2m^2x^2+2m^2-m\) \(y'=4x^3-4m^2x\) \(y'=0\)\(\Leftrightarrow4x\left(x^2-m^2\right)=0\)...
Đọc tiếp

Cho hàm số \(y=x^4-2m^2x^2+2m^2-m\)(với m là tham số)

Xác định m để đồ thị hàm số đã cho có ba điểm cực trị là ba đỉnh của một tam giác có chu vi bằng \(2\left(1+\sqrt{2}\:\right)\)

.............................................................................

Cách của em như sau ạ, mong chị và mọi người hướng dẫn em với:

\(y=x^4-2m^2x^2+2m^2-m\)

\(y'=4x^3-4m^2x\)

\(y'=0\)\(\Leftrightarrow4x\left(x^2-m^2\right)=0\) \(\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-m^2=0\left(2\right)\end{matrix}\right.\)

Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi phương trình (1) có 3 nghiệm phân biệt

\(\Leftrightarrow\) phương trình (2) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow m>0\)

Với mọi \(m>0\) ta được \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-m^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m\\x=-m\end{matrix}\right.\)

Gọi \(A\left(0;2m^2-m\right)\), \(B\left(m;-m^4+2m^2-m\right)\), \(C\left(-m;-m^4+2m^2-m\right)\)

Ta có: B và C đối xứng nhau qua Oy và A thuộc Oy

\(\Rightarrow AB=AC=\sqrt{m^2+m^8}\), \(BC=\sqrt{4m^2}\)

Chu vi tam giác ABC là bằng \(2\left(1+\sqrt{2}\: \right)\)khi và chỉ khi

\(AB+AC+BC=\)\(2\left(1+\sqrt{2}\: \right)\)

\(\Leftrightarrow\)\(2\sqrt{m^2+m^8}\)\(+\sqrt{4m^2}=\)\(2\left(1+\sqrt{2}\: \right)\)

............................................................

Đến đây làm sao tiếp nữa ạ

1
AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Nguyễn An: xin lỗi em chị trả lời hơi muộn.

Hướng đi của em hoàn toàn ổn và tự nhiên rồi, nhưng có 1 vài cái lưu ý là:

1. Điều kiện để PT(2) có 2 nghiệm pb là $m^2>0\Leftrightarrow m\neq 0$ chứ không phải $m>0$

2.

Đến đoạn $2\sqrt{m^2+m^8}+\sqrt{4m^2}=2(1+\sqrt{2})$

$\Leftrightarrow \sqrt{m^2+m^8}+|m|=1+\sqrt{2}$

$\Leftrightarrow \sqrt{t^2+t^8}-\sqrt{2}+t-1=0$ (đặt $|m|=t\geq 0$)

$\Leftrightarrow \frac{t^2+t^8-2}{\sqrt{t^2+t^8}+\sqrt{2}}+(t-1)=0$

$\Leftrightarrow (t-1)\left(\frac{t+1+t^7+t^6+...+1}{\sqrt{t^2+t^8}+\sqrt{2}}+1\right)=0$

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0 với mọi $t\geq 0$

Do đó $t-1=0\Leftrightarrow |m|=t=1\Rightarrow m=\pm 1$ (thỏa mãn)

Thông thường những pt của mấy bài toán dạng này kiểu gì cũng ra nghiệm đẹp, nên dù thấy số ban đầu hơi xấu cũng đừng nản chí :v

1 tháng 10 2019

@Akai Haruma chị ơi giúp em với

NV
5 tháng 8 2020

Khi delta dương pt \(y'=0\) có hai nghiệm pb, ko mất tính tổng quát, giả sử \(x_1< x_2\)

Hệ số a=1 dương nên ta có dấu của \(y'\) như sau:

Bài 1: Sự đồng biến và nghịch biến của hàm số

Do đó \(y'\ge0\) trên miền \([x_2;+\infty)\)

Để \(y'>0\) trên \(\left(1;+\infty\right)\) thì \(\left(1;+\infty\right)\) phải là tập con của \([x_2;+\infty)\) hay \(x_2\le1\)

NV
5 tháng 8 2020

\(y'=1-\frac{m}{\left(x-m\right)^2}=\frac{x^2-2mx+m^2-m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên khoảng đã cho thì hàm cần xác định và có đạo hàm không âm trên khoảng đó

- Để hàm số xác định trên khoảng thì \(m\le1\)

- Để \(x^2-2mx+m^2-m\ge0;\forall x>1\)

\(\Delta'=m^2-m^2+m=m\)

TH1: \(\Delta'\le0\Leftrightarrow m\le0\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-3m+1\ge0\\2m< 2\end{matrix}\right.\)

\(\Rightarrow0< m\le\frac{3-\sqrt{5}}{2}\)

Vậy \(m\le\frac{3-\sqrt{5}}{2}\)

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

9 tháng 11 2016

x=4096

12 tháng 11 2016

cảm ơn bạn