K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

a) \(\dfrac{3ac}{a^3b}=\dfrac{3c}{a^2b}\)

\(\dfrac{6c}{2a^2b}=\dfrac{3c}{a^2b}\)

\(\Rightarrow\dfrac{3ac}{a^3b}=\dfrac{6c}{2a^2b}\)

b) \(\dfrac{3ab-3b^2}{6b^2}=\dfrac{3b\left(a-b\right)}{6b^2}=\dfrac{a-b}{2b}\left(dpcm\right)\)

`a, (3ac)/(a^3b) = (3c)/(a^2b)`

`(6c)/(2a^2b) = (3c)/(a^2b)`

Vậy hai phân thức `=` nhau

`b, (3ab-3b^2)/(6b^2) = (3b(a-b))/(6b^2) = (a-b)/(2b)`

Vậy hai phân thức `=` nhau

a: \(\dfrac{xy^2}{xy-y}=\dfrac{y\cdot xy}{y\cdot\left(x-1\right)}=\dfrac{xy}{x-1}\)

=>Hai phân thức này bằng nhau

b: \(\dfrac{xy+y}{x}=\dfrac{y\left(x+1\right)}{x}\)

\(\dfrac{xy+x}{y}=\dfrac{x\left(y+1\right)}{y}\)

Vì \(\dfrac{y\left(x+1\right)}{x}\ne\dfrac{x\left(y+1\right)}{y}\)

nên hai phân thức này không bằng nhau

c: \(\dfrac{-6}{4y}=\dfrac{-6:2}{4y:2}=\dfrac{-3}{2y}\)

\(\dfrac{3y}{-2y^2}=\dfrac{-3y}{2y^2}=\dfrac{-3y}{y\cdot2y}=\dfrac{-3}{2y}\)

Do đó: \(\dfrac{-6}{4y}=\dfrac{3y}{-2y^2}\)

=>Hai phân thức này bằng nhau

`a, (xy^2)/(xy+y) = (xy^2)/(y(x+1))`

`=(xy)/(x+1)`

Vậy `2` cặp phân thức bằng nhau.

`b, (xy-y)/x = (y(x-1))/x = (y^2(x-1))/(xy)`

`(xy-x)/y = (x(y-1))/y = (x^2(y-1))/(xy)`

Vậy `2` đa thức không bằng nhau

21 tháng 4 2017

a) 32x332x−33x+62x2+x63x+62x2+x−6

Cách 1: Dùng định nghĩa hai phân thức bằng nhau.

32x332x−3= 3x+62x2+x63x+62x2+x−6

Vì : 3(2x2+x6)=6x2+3x183(2x2+x−6)=6x2+3x−18

=6x2+12x9x186x2+12x−9x−18

=2x(3x+6)3(3x+6)2x(3x+6)−3(3x+6)

=(2x3)(3x+6)(2x−3)(3x+6)

Cách 2: Rút gọn phân thức

3x+62x2+x6=3(x+2

11 tháng 11 2017

Bài 6:(Sbt/25) Dùng tính chất cơ bản của phân thức để biến đổi mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng tử thức :

a) \(\dfrac{3}{x+2}\)\(\dfrac{x-1}{5x}\)

Ta có:

\(\dfrac{3}{x+2}\) = \(\dfrac{3.\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}\) = \(\dfrac{3x-3}{x^2+x-2}\)

\(\dfrac{x-1}{5x}\) = \(\dfrac{\left(x-1\right).3}{5x.3}\) =\(\dfrac{3x-3}{15x}\)

Vậy .....

b. \(\dfrac{x+5}{4x}\)\(\dfrac{x^2-25}{2x+3}\)

Ta có:

\(\dfrac{x+5}{4x}\) = \(\dfrac{\left(x+5\right)\left(x-5\right)}{4x.\left(x-5\right)}\) = \(\dfrac{x^2-25}{4x^2-20x}\)

\(\dfrac{x^2-25}{2x+3}\)

Vậy .....

`a, P = x/y`.

`Q = x/y`

`R = (x(x+y))/(y(x+y)) = x/y`

Vậy `3` phân thức bằng nhau.

`b, Q . x/y = R`.

`R : x/y = Q.`

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:

ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)

\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)

Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:

\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)

 

30 tháng 4 2017

a ) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\) (1)

\(\dfrac{2x^2+x-1}{6x-3}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\) (2)

Từ (1) ; (2) \(\Rightarrow\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) (đpcm)

b ) \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\) (3)

\(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\) (4)

Từ (3) và (4) \(\Rightarrow\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\) (đpcm)

13 tháng 5 2017

a) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{x^2+x+2x+2}{3\left(x+2\right)}=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{3\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{3\left(x+2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\left(1\right)\) \(\dfrac{2x^2+x-1}{6x-3}=\dfrac{2x^2+2x-x-1}{3\left(2x-1\right)}=\dfrac{2x\left(x+1\right)-\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\left(2\right)\) Từ (1)và (2)=> \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) b)\(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\left(3\right)\) \(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\left(4\right)\) Từ (3) và (4) => \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)

 

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)

\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)