Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3}{5}\times\dfrac{7}{9}+\dfrac{3}{5}\times\dfrac{2}{9}+\dfrac{-3}{5}\)
\(=\dfrac{3}{5}\times\dfrac{7}{9}+\dfrac{3}{5}\times\dfrac{2}{9}+\dfrac{3}{5}\times\left(-1\right)\)
\(=\dfrac{3}{5}\times\left(\dfrac{7}{9}+\dfrac{2}{9}-1\right)\)
\(=\dfrac{3}{5}\times\left(1-1\right)\)
\(=\dfrac{3}{5}\times0=0\)
b) \(\dfrac{2}{3}\cdot\dfrac{17}{13}-\dfrac{2}{3}\cdot\dfrac{4}{13}\)
\(=\dfrac{2}{3}\cdot\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
\(=\dfrac{2}{3}\cdot1=\dfrac{2}{3}\)
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: AB=AM
=>A nằm trên đường trung trực của BM(1)
Ta có: DB=DM
=>D nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
a: góc BAH=90-50=40 độ
Xét ΔABM và ΔDCM có
AB=DC
góc ABM=góc DCM
MB=MC
Do đó: ΔABM=ΔDCM
b: ΔABM=ΔDCM
=>góc AMB=góc DMC
=>góc DMC+góc CMA=180 độ
=>A,M,D thẳng hàng
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>BD//AC
Tổng số phần bằng nhau: 3+5=8(phần)
Bạn Hùng quyên góp: 400 000 : 8 x 5 = 250 000 (đồng)
Bạn Minh quyên góp: 400 000 : 8 x 3 = 150 000 (đồng)
Bạn Dũng quyên góp: 400 000 : 8 x 4 = 200 000 (đồng)
a: Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
\(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)
Do đó: \(\widehat{ABC}=\widehat{ECN}\)
Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
BD=CE
\(\widehat{MBD}=\widehat{NCE}\)
Do đó: ΔMBD=ΔNCE
=>DM=EN
b: Ta có: DM\(\perp\)BC
EN\(\perp\)BC
Do đó: DM//EN
Xét ΔIDM vuông tại D và ΔIEN vuông tại E có
MD=EN
\(\widehat{MDI}=\widehat{ENC}\)(hai góc so le trong, DM//EN)
Do đó: ΔIDM=ΔIEN
=>IM=IN
=>I là trung điểm của MN
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\) và \(x+y=45\) (1) (\(x,y\ne0\))
Áp dụng tính chất của dãy tỉ số bằng nhau và (1), ta được:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{45}{9}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot4=20\\y=5\cdot5=25\end{matrix}\right.\left(tm\right)\)
b) Ta có: \(\dfrac{x}{y}=\dfrac{9}{11}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{11}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x+y=60\), ta được:
\(\dfrac{x}{9}=\dfrac{y}{11}=\dfrac{x+y}{9+11}=\dfrac{60}{20}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot9=27\\y=3\cdot11=33\end{matrix}\right.\)
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{45}{9}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.5=20\\y=5.5=25\end{matrix}\right.\)
b.
\(\dfrac{x}{y}=\dfrac{9}{11}\Rightarrow\dfrac{x}{9}=\dfrac{y}{11}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{11}=\dfrac{x+y}{9+11}=\dfrac{60}{20}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.11=33\end{matrix}\right.\)
Để sửa xong đoạn đường trong 1 ngày thì cần số công nhân:
\(8.10=80\) (người)
Muốn sửa đoạn đường đó trong 5 ngày thì cần số công nhân là:
\(80:5=16\) (người)
a/\(-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{4}{3}\right)\)
\(x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b/\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}\)
\(a.-\dfrac{4}{3}x=\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{\dfrac{1}{3}}{\dfrac{-4}{3}}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy \(x=-\dfrac{1}{4}\)
b)
\(\left|x-\dfrac{1}{2}\right|=\dfrac{5}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}=3\\x=-\dfrac{4}{2}=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)