Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. (a) Điều kiện: \(x\ne\pm1\).
Ta có: \(A=\left(\dfrac{x-2}{x-1}-\dfrac{x+3}{x+1}+\dfrac{3}{x-1}\right):\left(1-\dfrac{x+3}{x+1}\right)\)
\(=\left(\dfrac{x-2+3}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-\left(x+3\right)}{x+1}\)
\(=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-x-3}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{-2}{x+1}\)
\(=\dfrac{x^2+2x+1-x^2-2x+3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}=\dfrac{2}{1-x}\)
Vậy: \(A=\dfrac{2}{1-x}\)
(b) \(A=3\Leftrightarrow\dfrac{2}{1-x}=3\)
\(\Rightarrow1-x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\left(TM\right)\)
Vậy: \(x=\dfrac{1}{3}\)
Bài 2. (a) Phương trình tương đương với:
\(\dfrac{3\left(3x-2\right)}{12}+\dfrac{6\left(x+3\right)}{12}=\dfrac{4\left(x-1\right)}{12}+\dfrac{x+1}{12}\)
\(\Rightarrow3\left(3x-2\right)+6\left(x+3\right)=4\left(x-1\right)+x+1\)
\(\Leftrightarrow9x-6+6x+18=4x-4+x+1\)
\(\Leftrightarrow10x=-15\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy: Phương trình có tập nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\).
(b) Điều kiện: \(x\ne\pm1\). Phương trình tương đương với:
\(\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow2\left(x+1\right)+2\left(x-1\right)=2x^2+2\)
\(\Leftrightarrow2x+2+2x-2=2x^2+2\)
\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\left(KTM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\varnothing\)
2:
1: =7x(x-y)-5(x-y)
=(x-y)(7x-5)
2: =(x^2-y^2)-(4x-4y)
=(x-y)(x+y)-4(x-y)
=(x-y)(x+y-4)
3: =(x^2+2xy+y^2)-(2x+2y)+1
=(x+y)^2-2(x+y)+1
=(x+y-1)^2
3:
1: =>15x-9x+6=45-10x+25
=>6x+6=-10x+70
=>16x=64
=>x=4
2: =>x^2+4x-16-16=0
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
3: ĐKXĐ: x<>4; x<>-4
\(PT\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)
=>x+4+x^2-2x-8=5x-4
=>x^2-x-4=5x-4
=>x^2-6x=0
=>x(x-6)=0
=>x=0 hoặc x=6
4: \(\Leftrightarrow5\left(4x+1\right)-x+2>=3\left(2x-3\right)\)
=>20x+5-x+2>=6x-9
=>19x+7>=6x-9
=>13x>=-16
=>x>=-16/13
\(D=\dfrac{x^2}{x^2-1}+\dfrac{1}{x^2-x^4}=\dfrac{x^4}{x^2\left(x^2-1\right)}-\dfrac{1}{x^2\left(x^2-1\right)}=\dfrac{x^4-1}{x^2\left(x^2-1\right)}=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{x^2\left(x^2-1\right)}=\dfrac{x^2+1}{x^2}=1+\dfrac{1}{x^2}\)
do \(x\ne0,\pm1\Rightarrow\dfrac{1}{x^2}>0\Rightarrow1+\dfrac{1}{x^2}>1\Rightarrow D>1\left(đpcm\right)\)
\(D=\dfrac{x^2}{x^2-1}+\dfrac{1}{x^2-x^4}\\ =\dfrac{x^4\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\left(1-x\right)x^2}+\dfrac{x-1}{x^2\left(1-x\right)\left(1+x\right)\left(x-1\right)}\\ =\dfrac{x^4-x^5+x-1}{x^2\left(1-x\right)\left(1+x\right)\left(x-1\right)}\\ =\dfrac{-\left(x-1\right)^2\left(x^2+1\right)\left(x+1\right)}{-x^2\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+1}{x^2}>1\left(đpcm\right)\)
(x2 + 1 luôn lớn hơn x2)
Bài 4
a) Do Cx // AB
⇒ ∠BCx = ∠ABC = 45⁰ (so le trong)
b) Do AB ⊥ AE
DE ⊥ AE
⇒ AB // DE
Mà Cx // AB
⇒ Cx // DE
c) Do Cx // DE
⇒ ∠DCx = ∠CDE = 60⁰ (so le trong)
⇒ ∠BCD = ∠BCx + ∠DCx
= 45⁰ + 60⁰
= 105⁰
1) ( a + b ) ( a + b )
= a2 + ab + ab + b2
= a2 + 2ab + b2
2) ( a+ b ) ( a - b )
= a2 - ab + ab -b2
= a2 - b2
3) ( a - b ) ( a + b )
= a2 + ab - ab - b2
= a2 - b2
Hk tốt
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............
1.
\(A=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{\left(x^2-4\right)+x-2}{x^2-4}=\dfrac{\left(x-2\right)\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)\left(x+2+1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)
thay x = 98 ta được: \(A=\dfrac{101}{100}\)
2. (đkxd \(x\ne\pm1\))
\(B=\dfrac{x-1}{x+1}+\dfrac{x+1}{x-1}+\dfrac{5x}{1-x^2}=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{5x}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2+\left(x+1\right)^2-5x}{x^2-1}=\dfrac{x^2-2x+1+x^2+2x+1-5x}{x^2-1}=\dfrac{2x^2-5x+2}{x^2-1}=\dfrac{2x^2-4x-x+2}{x^2-1}=\dfrac{2x\left(x-2\right)-\left(x-2\right)}{x^2-1}=\dfrac{\left(x-2\right)\left(2x-1\right)}{x^2-1}\)để B bằng 0 thì: \(\left(x-2\right)\left(2x-1\right)=0\left(x^2-1\ge0\forall x\ne\pm1\right)\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
thank