Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại Kvà ΔAHI vuông tại H có
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
d: Xét ΔIBC có góc IBC=góc ICB
nên ΔICB cân tại I
e: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
f: ΔABC cân tại A
ma AI là đường cao
nên AI là trung trực của BC
g: ΔAKI=ΔAHI
=>KI=HI
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AH=AK
Do đó: ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔACH
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
Bài 3 :
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
Số học sinh lớp 6A và lớp 6B là 2/3 hay là 8/12
Khi tăng số học sinh lớp 6A thêm 8 bạn, lớp 6B lên 4 bạn thì tỉ số là 3/4 hay là 9/12
vậy lớp 6 A thêm số học sinh hơn lớp 6B là 8 - 4 = 4 bạn
4 bạn ứng với số phần là: 9/12 - 8/12 = 1/12
Lớp 6A có số học sinh là: 4x 12 - 8 = 40 (hs)
Lớp 6B có số học sinh là: 40x 3 : 2= 60 (hs)
Xét tam giác ABC vuông tại A
BC^2=AB^2+AC^2(định lý Pytago)
AB:AC=5:12<=>AB/5=AC/12
<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số bằng nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
Thanh Dương copy bài người khác xong thì ghi nguồn vào với ạ =)))
Từ D hạ đường vuông góc với AB tại K.
Xét \(\Delta\)BHD và \(\Delta\)BKD có:
^BHD=^BKD=900
BD chung => \(\Delta\)BHD=\(\Delta\)BKD (Cạnh huyền góc nhọn)
^HBD=^KBD
=> BH=BK (2 cạnh tương ứng).
Xét \(\Delta\)AKD có: ^AKD =900 => AD là cạnh lớn nhất trong \(\Delta\)AKD (Tính chất góc và cạnh đối diện trong tam giác)
=> AD>AK. Lại có: AB=AC => BK+AK=CD+AD. Mà AK<AD => AB-AK>AC-AD =>BK>CD
Mà BK =BH (cmt) =>BH>CD (đpcm)
k mình với!!