K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2020

Ta có bất đẳng thức: \(ab+bc+ca\le a^2+b^2+c^2;\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Kết hợp với \(a^2+b^2+c^2=3\) ta có \(a+b+c+ab+bc+ca\le6\).

Mặt khác theo bài ra ta có đẳng thức xảy ra, do đó ta phải có: \(\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=3\\a+b+c\ge0\end{matrix}\right.\Leftrightarrow a=b=c=1\).

Thay vào A ta tính được \(A=1\).

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

26 tháng 8 2021

tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021 

a,1/a+1/b+1/c=1/a+b+c

⇔(a+b)(b+c)(c+a)=0

⇔a = -b

⇔ b = -c

⇔ c = -a

⇒A=(a3+b3)(b3+c3)(c3+a3)=0

b,

vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0

⇒ C = 3

Thay c=3 vao bieu thuc P ta co:

P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0

Vay P = 0

HT~

NV
15 tháng 1 2019

Ta có:

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)

\(\Rightarrow ab+ac+bc\le\dfrac{2.3}{2}=3\) (1)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)

\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+3}{2}=3\) (2)

Cộng vế với vế của (1) và (2) ta được:

\(a+b+c+ab+ac+bc\le6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

\(\Rightarrow A=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2017}}=\dfrac{3}{3}=1\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$

$\Rightarrow a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$

Mà $a+b+c=9$ nên $a=b=c=3$. 

Khi đó:

$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$

$=(-1)+1+(-1)=-1$

23 tháng 6 2017

Ta có:

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

Thiết lập 2 BĐT tương tự ta có:

\(b^2+c^2\ge2bc;c^2+a^2\ge2ca\)

\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\Leftrightarrow a^2+1\ge2a\)

Và tương tự \(b^2+1\ge2b;c^2+1\ge2c\)

Cộng theo vế các BĐT trên ta có:

\(2ab+2bc+2ca+2a+2b+2c\le3a^2+3b^2+3c^2+3\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le3\left(a^2+b^2+c^2+1\right)\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le12\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Khi đó \(A=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}=\dfrac{1+1+1}{1+1+1}=1\)