\(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Ta có:

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

Thiết lập 2 BĐT tương tự ta có:

\(b^2+c^2\ge2bc;c^2+a^2\ge2ca\)

\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\Leftrightarrow a^2+1\ge2a\)

Và tương tự \(b^2+1\ge2b;c^2+1\ge2c\)

Cộng theo vế các BĐT trên ta có:

\(2ab+2bc+2ca+2a+2b+2c\le3a^2+3b^2+3c^2+3\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le3\left(a^2+b^2+c^2+1\right)\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le12\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Khi đó \(A=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}=\dfrac{1+1+1}{1+1+1}=1\)

NV
15 tháng 1 2019

Ta có:

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)

\(\Rightarrow ab+ac+bc\le\dfrac{2.3}{2}=3\) (1)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)

\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+3}{2}=3\) (2)

Cộng vế với vế của (1) và (2) ta được:

\(a+b+c+ab+ac+bc\le6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

\(\Rightarrow A=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2017}}=\dfrac{3}{3}=1\)

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

\(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow\left(2a^2+2b^2+2c^2\right)-\left(2ab+2bc+2ca\right)=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\)\(\Rightarrow a-b=b-c=c-a=0\)

\(\Rightarrow P=\left(a-b\right)^{2015}+\left(b-c\right)^{2016}+\left(c-a\right)^{2017}=0\)

8 tháng 4 2019

cảm ơn bạn nha

8 tháng 10 2018

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

21 tháng 10 2018

cáh khác nè:từ

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{aa+aa+aa}{a^2+a^2+a^2}=1\)

bạn dưới làm sai rồi

P=1 MỚI ĐÚNG

3

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)

2b)

Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)

đến đây tự làm