loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3: 

a: A={2;4;...;98}

A có (98-2):2+1=49 phần tử

B={2;3;4;5;...;50}

B có 50-2+1=49 phần tử

b: A giao B={2;4}

c: Đó ko là tập con của A hay B vì A và B đều ko chứa số 0

17 tháng 8 2023

Ta có các quy luật sau:

\(\left(1+3\right)-2=2\)

\(\left(2+2\right)-3=1\)

\(\left(5+5\right)-6=4\)

Vậy dòng cuối là: 

\(\left(5+9\right)-5=9\)

Số điền vào là 9

(Quy luật: lấy 2 số phía dưới cộng với nhau rồi trừ cho số phía trên sẽ ra được số ở giữa)

17 tháng 8 2023

( 1 + 3 ) − 2 = 2

( 2 + 2 ) − 3 = 1

( 5 + 5 ) − 6 = 4

Ta có dòng cuối là:

( 5 + 9 ) − 5 = 9

=>Số cần tìm là 9

11 tháng 8 2023

Quy luật: Hiệu của số lớn hơn trừ cho số nhỏ hơn trong mổi ô chính là kết quả của ô màu vàng đối diện

17-13=4

15-6=9

14-8=6

19-12=7

23-15=8

27-25=2

23-18=5

Suy ra: 12-x=3 

          => x=12-3=9

Đáp án C

11 tháng 8 2023

Giải thích: Mỗi số trong hình tam giác màu vàng bằng số lớn hơn của hình bình hành đối diện trừ đi số bé hơn ở hình bình hành đối diện.

=> ? - 12 = 3 hoặc 12 - ? = 3

=> Đáp án là 15 hoặc 9

Đáp án: c

Bổ sung: Đáp án cũng có thể là 15

16 tháng 1 2024

Bài 1: 

a; 24 ⋮ \(x\); 30 ⋮ \(x\); 48 \(⋮\) \(x\) và \(x\) lớn nhất.

vì 24 \(⋮\) \(x\); 30 ⋮ \(x\); 48 ⋮ \(x\) ⇒ \(x\) \(\in\) ƯC(24; 30; 48)

Vì \(x\) là lớn nhât nên \(x\) \(\in\) ƯCLN(24; 30; 48) 

        24 = 22.33;   30 = 2.3.5; 48 = 24.3 

        ƯCLN(24; 30; 48) = 2.3 = 6 

⇒ \(x\) = 6

Vậy \(x\) = 6

16 tháng 1 2024

b; 120 ⋮ \(x\); 180 ⋮ \(x\); 30 ⋮ \(x\) 

   ⇒ \(x\) \(\in\) ƯC(120; 180; 390)

    120 = 23.3.5; 180 = 22.32.5; 390 = 2.3.5.13

ƯC(120; 180; 390) = 2.3.5 = 30 

⇒ \(x\in\) Ư(30) = {1; 2; 3; 5; 6; 10;15; 30}

Vì 5 ≤ \(x\) ≤ 15  nên \(x\) \(\in\) {5; 6; 10; 15}

 

  

 

13 tháng 1 2024

Bài 4:

a; \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) = \(\dfrac{5}{20}\) - \(\dfrac{4}{20}\) = \(\dfrac{1}{20}\)

b; \(\dfrac{3}{5}\) - \(\dfrac{-1}{2}\) = \(\dfrac{6}{10}\) + \(\dfrac{5}{10}\) = \(\dfrac{11}{10}\)

c; \(\dfrac{3}{5}\) - \(\dfrac{-1}{3}\) = \(\dfrac{9}{15}\) + \(\dfrac{5}{15}\) = \(\dfrac{14}{15}\)

d; \(\dfrac{-5}{7}\) - \(\dfrac{1}{3}\)\(\dfrac{-15}{21}\) - \(\dfrac{7}{21}\)\(\dfrac{-22}{21}\)

13 tháng 1 2024

Bài 5

a; 1 + \(\dfrac{3}{4}\) = \(\dfrac{4}{4}\) + \(\dfrac{3}{4}\) = \(\dfrac{7}{4}\)       b; 1 - \(\dfrac{1}{2}\) = \(\dfrac{2}{2}\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)

c; \(\dfrac{1}{5}\) - 2 = \(\dfrac{1}{5}\) - \(\dfrac{10}{5}\) = \(\dfrac{-9}{5}\)     d; -5 - \(\dfrac{1}{6}\) = \(\dfrac{-30}{6}\) - \(\dfrac{1}{6}\) = \(\dfrac{-31}{6}\)

e; - 3 - \(\dfrac{2}{7}\)\(\dfrac{-21}{7}\) - \(\dfrac{2}{7}\)\(\dfrac{-23}{7}\)     f; - 3 + \(\dfrac{2}{5}\) = \(\dfrac{-15}{5}\) + \(\dfrac{2}{5}\)= - \(\dfrac{13}{5}\)

g; - 3 - \(\dfrac{2}{3}\) = \(\dfrac{-9}{3}\) - \(\dfrac{2}{3}\) = \(\dfrac{-11}{3}\)     h; - 4 - \(\dfrac{-5}{7}\) = \(\dfrac{-28}{7}\)\(\dfrac{5}{7}\) = - \(\dfrac{23}{7}\)

10 tháng 1 2024

Bài 2: 

\(\dfrac{12}{-24}=\dfrac{12:12}{-24:12}=\dfrac{1}{-2}\)

\(\dfrac{-39}{75}=\dfrac{-39:3}{75:3}=\dfrac{-13}{25}\)

\(\dfrac{132}{-264}=\dfrac{132:132}{-264:132}=\dfrac{1}{-2}\)

10 tháng 1 2024

Bài 3:

\(\dfrac{1}{-2}=\dfrac{-1}{2};\dfrac{-3}{-5}=\dfrac{3}{5};\dfrac{2}{-7}=\dfrac{-2}{7}\)

Bài 4:

\(15p=\dfrac{1}{4}h;20p=\dfrac{1}{3}h;45p=\dfrac{3}{4}h;50p=\dfrac{5}{6}h\)

12 tháng 1 2024

2. Các cặp số đối với nhau là:

\(\dfrac{-5}{6}\) và \(\dfrac{5}{6}\)

\(\dfrac{-40}{-10}\) và \(\dfrac{40}{-10}\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Bài 5:

a. Gọi $d=ƯCLN(n-2, n+1)$

$\Rightarrow n-2\vdots d; n+1\vdots d$

$\Rightarrow (n+1)-(n-2)\vdots d$

$\Rightarrow 3\vdots d\Rightarrow d\in \left\{1; 3\right\}$
Để ps tối giản thì $n-2\not\vdots 3$

$\Leftrightarrow n\neq 3k+2$ với $k$ là số tự nhiên bất kỳ.

b.

Gọi $d=ƯCLN(n+5, n-2)$

$\Rightarrow n+5\vdots d; n-2\vdots d$

$\Rightarrow (n+5)-(n-2)\vdots d$

$\Rightarrow 7\vdots d$

$\Rightarrow d\in \left\{1; 7\right\}$

Để ps tối giản thì $n-2\not\vdots 7$

$\Rightarrow n\neq 7k+2$ với $k$ là số tự nhiên bất kỳ.