K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

15 tháng 3 2020

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

5 tháng 5 2018

Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)

Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)

Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :

\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)

\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(f(7)-f(3)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

=> đpcm


⇒{2008a+3b+12018a+2018a+b là hai số lẻ

Nếu a≠0⇒2008a+2018a là số chẵn

Để 2008a+2008a+b lẻ ⇒b lẻ

Nếu b lẻ ⇒3b+1 chẵn

Do đó 2008a+3b+1 chẵn (không thỏa mãn)

⇒a=0

Với a=0⇒(3b+1)(b+1)=225

Vì b∈N⇒(3b+1)(b+1)=3.75=5.45=9.25

Do 3b+1 ⋮̸ 3 và 3b+1>b+1

⇒{3b+1=25b+1=9⇒b=8

Vậy: {a=0b=8

     

1.A)

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 
Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

26 tháng 4

chịu