Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc.
Uh mình chỉ giúp được câu a
\(x^2-5x+3=0\)
\(\Delta=b^2-4ac\)
\(=\left(-5\right)^2-4.1.3\)
\(=25-12=13>0\)
\(x1=\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{13}}{2}\)
\(x2=\dfrac{b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{13}}{2}\)
3: góc AMN=góic ACM
=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM
=>góc AMB=90 độ
=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM
NO1 min khi NO1=d(N;BM)
=>NO1 vuông góc BM
Gọi O1 là chân đường vuông góc kẻ từ N xuống BM
=>O1 là tâm đường tròn ngoại tiếp ΔECM có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM
a) \(\dfrac{\sqrt{28y^6}}{\sqrt{7y^4}}=\sqrt{\dfrac{28y^6}{7y^4}}=\sqrt{4y^2}=\left|2y\right|=-2y\left(y< 0\right)\)
b) \(\sqrt{\dfrac{14a}{b}}.\sqrt{\dfrac{7ab^3}{2}}=\sqrt{\dfrac{14a}{b}.\dfrac{7ab^3}{2}}=\sqrt{49a^2b^2}=\left|7ab\right|\)
\(==7\left(-a\right)\left(-b\right)\left(a,b< 0\right)=7ab\)
c) \(\sqrt{\sqrt{x^4+4}-x^2}.\sqrt{\sqrt{x^4+4}+x^2}\)
\(=\sqrt{\left(\sqrt{x^4+4}-x^2\right)\left(\sqrt{x^4+4}+x^2\right)}\)
\(=\sqrt{x^4+4-\left(x^2\right)^2}=\sqrt{4}=2\)
Min:
Do \(\left\{{}\begin{matrix}a;b;c\ge1\\a^2+b^2+c^2=6\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le2\)
\(\Rightarrow\left(a-1\right)\left(a-2\right)\le0\Rightarrow a^2+2\le3a\Rightarrow a\ge\dfrac{a^2+2}{3}\)
Tương tự: \(b\ge\dfrac{b^2+2}{3}\) ; \(c\ge\dfrac{c^2+2}{3}\)
\(\Rightarrow a+b+c\ge\dfrac{a^2+b^2+c^2+6}{3}=4\)
\(\Rightarrow\left(a+b+c\right)^2\ge16\)
\(\Rightarrow6+2\left(ab+bc+ca\right)\ge16\)
\(\Rightarrow ab+bc+ca\ge5\)
\(P_{min}=5\) khi \(\left(a;b;c\right)=\left(1;1;2\right)\) và các hoán vị
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đt luôn đi qua với mọi m
\(\Leftrightarrow mx_0+3+3my_0-y_0=0\\ \Leftrightarrow m\left(x_0+3y_0\right)+\left(3-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+3y_0=0\\3-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-9\\y_0=3\end{matrix}\right.\Leftrightarrow A\left(-9;3\right)\)
Vậy đồ thị luôn đi qua \(A\left(-9;3\right)\) với mọi m
a: Ta có: AD=DE=EC
mà AD+DE+EC=3a
nên \(AD=DE=EC=a\)
mà AB=a
nên AB=AD=DE=EC=a và DC=2a
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=BA^2+AD^2\)
\(\Leftrightarrow BD^2=a^2+a^2=2a^2\)
hay \(BD=a\sqrt{2}\)
Ta có: \(\dfrac{DE}{DB}=\dfrac{a}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
mà \(\dfrac{DB}{DC}=\dfrac{a\sqrt{2}}{2a}=\dfrac{\sqrt{2}}{2}\)
nên \(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)
b: Xét ΔBDE và ΔCDB có
\(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)
\(\widehat{BDC}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB
a: Ta có: \(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
b: Ta có: \(x=\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}\)
\(=2\left(\sqrt{5}+1\right)-2\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}+2-2\sqrt{5}+2\)
=4
Thay x=4 vào M, ta được:
\(M=\dfrac{2}{4+2+1}=\dfrac{2}{7}\)
a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC
Vậy AD || BC (đpcm).
b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).
c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED
=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD
=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)
Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H
=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)
Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).