K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

A B C O D E F H I

a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC

Vậy AD || BC (đpcm).

b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).

c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED

=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD

=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)

Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H

=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)

Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc.

2 tháng 5 2021

Uh mình chỉ giúp được câu a

\(x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(=\left(-5\right)^2-4.1.3\)

\(=25-12=13>0\)

\(x1=\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{13}}{2}\)

\(x2=\dfrac{b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{13}}{2}\)

4 tháng 1 2018

a 2n+1

​​

4 tháng 1 2018

chắc chắn ko vậy bn

3: góc AMN=góic ACM

=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM

=>góc AMB=90 độ

=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM

NO1 min khi NO1=d(N;BM)

=>NO1 vuông góc BM

Gọi O1 là chân đường vuông góc kẻ từ N xuống BM

=>O1 là tâm đường tròn ngoại tiếp ΔECM  có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM

21 tháng 7 2021

a) \(\dfrac{\sqrt{28y^6}}{\sqrt{7y^4}}=\sqrt{\dfrac{28y^6}{7y^4}}=\sqrt{4y^2}=\left|2y\right|=-2y\left(y< 0\right)\)

b) \(\sqrt{\dfrac{14a}{b}}.\sqrt{\dfrac{7ab^3}{2}}=\sqrt{\dfrac{14a}{b}.\dfrac{7ab^3}{2}}=\sqrt{49a^2b^2}=\left|7ab\right|\)

\(==7\left(-a\right)\left(-b\right)\left(a,b< 0\right)=7ab\)

c) \(\sqrt{\sqrt{x^4+4}-x^2}.\sqrt{\sqrt{x^4+4}+x^2}\)

\(=\sqrt{\left(\sqrt{x^4+4}-x^2\right)\left(\sqrt{x^4+4}+x^2\right)}\)

\(=\sqrt{x^4+4-\left(x^2\right)^2}=\sqrt{4}=2\)

NV
26 tháng 7 2021

Min:

Do \(\left\{{}\begin{matrix}a;b;c\ge1\\a^2+b^2+c^2=6\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le2\)

\(\Rightarrow\left(a-1\right)\left(a-2\right)\le0\Rightarrow a^2+2\le3a\Rightarrow a\ge\dfrac{a^2+2}{3}\)

Tương tự: \(b\ge\dfrac{b^2+2}{3}\) ; \(c\ge\dfrac{c^2+2}{3}\)

\(\Rightarrow a+b+c\ge\dfrac{a^2+b^2+c^2+6}{3}=4\)

\(\Rightarrow\left(a+b+c\right)^2\ge16\)

\(\Rightarrow6+2\left(ab+bc+ca\right)\ge16\)

\(\Rightarrow ab+bc+ca\ge5\)

\(P_{min}=5\) khi  \(\left(a;b;c\right)=\left(1;1;2\right)\) và các hoán vị

9 tháng 11 2021

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đt luôn đi qua với mọi m

\(\Leftrightarrow mx_0+3+3my_0-y_0=0\\ \Leftrightarrow m\left(x_0+3y_0\right)+\left(3-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+3y_0=0\\3-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-9\\y_0=3\end{matrix}\right.\Leftrightarrow A\left(-9;3\right)\)

Vậy đồ thị luôn đi qua \(A\left(-9;3\right)\) với mọi m

a: Ta có: AD=DE=EC

mà AD+DE+EC=3a

nên \(AD=DE=EC=a\)

mà AB=a

nên AB=AD=DE=EC=a và DC=2a

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=BA^2+AD^2\)

\(\Leftrightarrow BD^2=a^2+a^2=2a^2\)

hay \(BD=a\sqrt{2}\)

Ta có: \(\dfrac{DE}{DB}=\dfrac{a}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

mà \(\dfrac{DB}{DC}=\dfrac{a\sqrt{2}}{2a}=\dfrac{\sqrt{2}}{2}\)

nên \(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)

b: Xét ΔBDE và ΔCDB có 

\(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)

\(\widehat{BDC}\) chung

Do đó: ΔBDE\(\sim\)ΔCDB

Điểm F ở đâu vậy bạn?

a: Ta có: \(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b: Ta có: \(x=\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}\)

\(=2\left(\sqrt{5}+1\right)-2\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}+2-2\sqrt{5}+2\)

=4

Thay x=4 vào M, ta được:

\(M=\dfrac{2}{4+2+1}=\dfrac{2}{7}\)