K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BCDE là tứ giác nội tiếp

2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

góc EKB=góc DKC

Do đó: ΔEKB\(\sim\)ΔDKC

Suy ra: KE/KD=KB/KC

hay \(KE\cdot KC=KB\cdot KD\)

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

=>ΔBDH đồng dạng với ΔBEC

=>BH/BC=DH/EC

=>BH*EC=DH*BC

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

a: góc OAD+góc OMD=180 độ

=>OADM nội tiếp

b: ΔOBC cân tại O

mà ON là đường cao

nên ONlà trung trực của BC

=>sđ cung NB=sd cung NC

=>góc BAN=góc CAN

=>AN là phân giác của góc BAC

góc DAI=1/2*sđ cung AN

góc DIA=1/2(sđ cung AB+sđ cung NC)

=1/2(sđ cung AB+sđ cung NB)

=1/2*sđ cung AN

=>góc DAI=góc DIA

=>ΔDAI cân tại D

3: 

Xét ΔGMB và ΔGCA có

góc GMB=góc GCA

góc G chung

=>ΔGMB đồng dạng với ΔGCA

=>GM/GC=GB/GA

=>GM*GA=GB*GC

Xét ΔGEB và ΔGCD có

góc GEB=góc GCD

góc EGB chung

=>ΔGEB đồng dạng với ΔGCD

=>GE/GC=GB/GD

=>GE*GD=GB*GC=GM*GA

=>GE/GA=GM/GD

=>ΔGEM đồng dạng với ΔGAD

=>góc GEM=góc GAD

=>góc DEM+góc DAM=180 độ

=>ADEM nội tiếp

=>góc MDE=góc MAE

loading...  loading...  

13 tháng 4 2023

câu c) đâu bro