Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ cần GP câu này nữa thôi
D(x)=x2+7x-8
Ta có:
\(D\left(x\right)=x^2+7x-8=x^2-x+8x-8=x\left(x-1\right)+8\left(x-1\right)=\left(x+8\right)\left(x-1\right)\)
\(D\left(x\right)=0\Leftrightarrow\left(x+8\right)\left(x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x+8=0\\x-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-8\\x=1\end{array}\right.\)
E(x)=x2 - 6x
Ta có:
\(E\left(x\right)=\text{ }x^2-6x=x\left(x-6\right)\)
\(E\left(x\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=6\end{array}\right.\)
Gọi đường sinh là l, bán kính đáy R, chiều cao SO là h
Do thiết diện qua trục là tam giác vuông nên thiết diện là tam giác vuông cân
\(\Rightarrow SO=R\Rightarrow h=R\)
Áp dụng định lý cos: \(AB=\sqrt{OA^2+OB^2-2OA.OB.cos120^0}=R\sqrt{3}\)
Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) ; \(AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)
\(OH=\sqrt{OA^2-AH^2}=\dfrac{R}{2}\)
Kẻ \(OK\perp SH\Rightarrow OK\perp\left(SAB\right)\Rightarrow OK=d\left(O;\left(P\right)\right)\)
\(\dfrac{1}{SO^2}+\dfrac{1}{OH^2}=\dfrac{1}{OK^2}\Rightarrow\dfrac{1}{R^2}+\dfrac{4}{R^2}=\dfrac{5}{3a^2}\Rightarrow R=a\sqrt{3}\)
\(V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi R^3=\pi a^3\sqrt{3}\)
Đặt \(log_2x=t\Rightarrow t\ge4\)
Phương trình trở thành: \(\sqrt{t^2-2t-3}=m\left(t-3\right)\)
\(\Leftrightarrow\sqrt{\left(t+1\right)\left(t-3\right)}=m\left(t-3\right)\)
\(\Leftrightarrow\sqrt{t+1}=m\sqrt{t-3}\)
\(\Leftrightarrow m=\sqrt{\dfrac{t+1}{t-3}}\)
Hàm \(f\left(t\right)=\sqrt{\dfrac{t+1}{t-3}}\) nghịch biến khi \(t\ge4\)
\(\lim\limits_{t\rightarrow+\infty}\sqrt{\dfrac{t+1}{t-3}}=1\) ; \(f\left(4\right)=\sqrt{5}\)
\(\Rightarrow1< f\left(t\right)\le\sqrt{5}\Rightarrow1< m\le\sqrt{5}\)
Đáp án D
hàm số \(y=x^0\text{ cũng chính là đường thẳng }y=1\) đây là một đường thẳng vuông góc với trục Oy tại điểm (0,1) thôi
còn hàm \(y=\frac{1}{x}\Rightarrow y'=-\frac{1}{x^2}< 0\forall x\) nên hàm số nghịch biến trên R.
Đồ thị hàm số
Phương trình mặt phẳng (P) qua A và vuông góc \(\overrightarrow{a}\) có dạng:
\(4\left(x-1\right)+2\left(y-1\right)-1\left(z+2\right)=0\)
\(\Leftrightarrow4x+2y-z-8=0\)
Gọi B là giao điểm (P) và \(\Delta\Rightarrow\) tọa độ B thỏa mãn:
\(4\left(2-t\right)+2\left(3+2t\right)-\left(1+3t\right)-8=0\) \(\Rightarrow t=\dfrac{5}{3}\) \(\Rightarrow B\left(\dfrac{1}{3};\dfrac{19}{3};6\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-\dfrac{2}{3};\dfrac{16}{3};8\right)=\dfrac{2}{3}\left(-1;8;12\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=1-t\\y=1+8t\\z=-2+12t\end{matrix}\right.\)
1 + 1=2
Cho mik hỏi sao lại là toán lớp 12?
HỌc tốt!
1+1=2
đấy xong rồi