K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Ta có:\(F(x)=\int (2x-3)\ln xdx\)

Đặt \(\left\{\begin{matrix} u=\ln x\\ dv=(2x-3)dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\int (2x-3)dx=x^2-3x\end{matrix}\right.\)

Do đó:

\(F(x)=\int (2x-3)\ln xdx=(x^2-3x)\ln x-\int (x^2-3x).\frac{dx}{x}\)

\(=(x^2-3x)\ln x-\int (x-3)dx=(x^2-3x)\ln x-(\frac{x^2}{2}-3x)+c\)

Với \(x=1\)

\(F(1)=\frac{5}{2}+c=0\Rightarrow c=\frac{-5}{2}\)

Vậy \(F(x)=(x^2-3x)\ln x-\frac{x^2}{2}+3x-\frac{5}{2}\)

\(\Rightarrow 2F(x)+x^2-6x+5=2(x^2-3x)\ln x-x^2+6x-5+x^2-6x+5\)

\(=2(x^2-3x)\ln x=0\)

\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\\ x=1\end{matrix}\right.\)

Tức là pt có 3 nghiệm.

NV
27 tháng 1 2022

Đặt \(\left\{{}\begin{matrix}u=ln\left(ax+b\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{a}{ax+b}dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.ln\left(ax+b\right)-\int\dfrac{ax}{ax+b}dx=x.ln\left(ax+b\right)-\int\left(1-\dfrac{b}{ax+b}\right)dx\)

\(=x.ln\left(ax+b\right)-x+\dfrac{b}{a}ln\left(ax+b\right)+C\)

28 tháng 1 2023

\(I= \int \frac{sinx-cosx}{(sinx+cosx)^2-4}\ dx \\u=sinx+cosx, du=(cosx-sinx) dx=-(sinx-cosx)dx \\I = -\int \frac{du}{u^2-4} \\ =-\int \frac{\frac{1}{4}}{u-2}+\frac{\frac{1}{4}}{u+2}\ du \\ = -\frac{1}{4}ln(|\frac{sinx+cosx-2}{sinx+cosx+2}|)+C\)

7 tháng 3 2022

\(\int\dfrac{1}{2x+3}dx=\dfrac{1}{2}ln\left|2x+3\right|+C\)

ta có \(f\left(2\right)=\dfrac{1}{2}ln\left|2\times2+3\right|+C=\dfrac{1}{2}ln7+C=1\Leftrightarrow C=1-\dfrac{1}{2}ln7\)

2 tháng 6 2016

theo đề bài: \(x_0=0\Rightarrow y_0=-3\)

Mặc khác: k = y'(0) = 1

vậy phương trình tiếp tuyến là: y+3=x

29 tháng 4 2016

Gọi \(M\left(x_0;x^3_0-3x_0+2\right)\) là tiếp điểm. Phương trình tiếp tuyến là :

\(\Delta:y=\left(3x^2_0-3\right)\left(x-x_0\right)+x^3_0-3x_0+2\)

Giả sử \(N\left(a;a^3-3a+2\right)\in\left(C\right),\left(a\ne x_0\right)\)

Tiếp tuyến \(\Delta\) đi qua N nên :

\(a^3-3a+2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0+2\)

\(\Leftrightarrow\left(a-x_0\right)^2\left(a+2x_0\right)=0\Leftrightarrow a=-2x_0;\left(x_0\ne a\right)\)

Suy ra \(N\left(-2x_0;-8x_0^3+6x_0+2\right)\)

Ta có \(MN=2\sqrt{6}\Leftrightarrow9x^2_0+\left(9x_0^3-9x_0\right)^2=24\Leftrightarrow x^2_0=\frac{4}{3}\)

Ta được 2 điểm là \(M\left(\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right):M\left(-\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right)\)