K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

7 tháng 11 2021

Tổng các chữ số trong số chia hết cho 3 thì số đó cũng chia hết cho 3.

VD: 33.

Số có đuôi là 0,5 thì số đó chia hết cho 5.

VD: 100

7 tháng 11 2021

Chia hết cho 3

Những số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3

Ví dụ: 132 : 3 = 1 + 3 + 2 = 6 : 3 = 2 vậy 132 : 3 = 44

Chia hết cho 5

Những chữ số có tận cùng là 0 hoặc 5 thì chia hết cho 5

Ví dụ: 1050 : 5 vì 1050 có chữ số tận cùng là 0 nên 1050 : 5 = 210

2 tháng 2 2023

P(x) = 7x + 3x - 1 \(⋮9\)

Với x = 3k + 1 (k \(\inℕ^∗\))

= 73k + 1 + 33k + 1 - 1

= 343k.3 + 27k.3 - 1 

= (343k.3 - 3) + 27k.3 + 2

= 3(343k - 1) + 27k.3 + 2 

= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

=> P(x) : 9 dư 2

Với x = 3k + 2  

P(x) = 73k + 2 + 33k + 2 - 1

= 343k.49 + 27k.9 - 1 

= (343k.49 - 49) + 27k.9 + 48

= 49(343k - 1) + 27k.9 + 48

= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3

=> P(x) : 9 dư 3

Với x = 3k 

Khi đó P(x) = 73k + 33k - 1

= (343k - 1) + 27k

= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k

= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)

Vậy P(x) \(⋮\Leftrightarrow x⋮3\)

5 tháng 4 2020

Vì 102011+8 có tổng các chữ số chia hết cho 9 nên tổng chia hết cho 9

Lại có 102011+8 có chữ số tận cùng là 008 nên chia hết cho 8

Mà (8;9)=1

=> 102011+8 chia hết cho 8.9=72

26 tháng 9 2023

M = 1 + 3 +3^2 +... +3^99

3M = 3 +3^2 + 3^3 + .... 3^100

3M - M = (3+3^2+3^3+... + 3^100)-(1+3+3^2+...+3^99)

2M = 3^100 -1

2M+1= 3^100

2M+1 = (3^50)^2

Vậy 2M +1 là số chính phương

26 tháng 9 2023

M = 1 + 3 + 3² + ... + 3⁹⁹

⇒ 3M = 3 + 3² + 3³ + ... + 3¹⁰⁰

⇒ 2M = 3M - M

= (3 + 3² + 3³ + ... + 3¹⁰⁰) - (1 + 3 + 3² + ... + 3⁹⁹)

= 3¹⁰⁰ - 1

⇒ 2M + 1 = 3¹⁰⁰ - 1 + 1 = 3¹⁰⁰

= (3⁵⁰)²

Vậy 2M + 1 là số chính phương

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$

DT
21 tháng 12 2023

Do A có 30 số hạng, ta nhóm 3 số thành 1 nhóm nên vừa đủ 10 nhóm và không dư số nào.

A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30

= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^28+2^29+2^30)

= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^28(1+2+2^2)

= 2.7 + 2^4 .7 + ... + 2^28 .7

= 7(2+2^4+...+2^28) chia hết cho7 (DPCM)

DT
21 tháng 12 2023

A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30

= (2+2^2+2^3)+...+(2^28+2^29+2^30)

= 2(1+2+2^2)+...+2^28(1+2+2^2)

= 2.7 + ... + 2^28 .7

= 7.(2+...+2^28) chia hết cho 7

Tham Khảo

1 tháng 9 2021

thanhks Nguyễn Hoài Đức CTVVIP nha