Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Tổng các chữ số trong số chia hết cho 3 thì số đó cũng chia hết cho 3.
VD: 33.
Số có đuôi là 0,5 thì số đó chia hết cho 5.
VD: 100
Chia hết cho 3
Những số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3
Ví dụ: 132 : 3 = 1 + 3 + 2 = 6 : 3 = 2 vậy 132 : 3 = 44
Chia hết cho 5
Những chữ số có tận cùng là 0 hoặc 5 thì chia hết cho 5
Ví dụ: 1050 : 5 vì 1050 có chữ số tận cùng là 0 nên 1050 : 5 = 210
P(x) = 7x + 3x - 1 \(⋮9\)
Với x = 3k + 1 (k \(\inℕ^∗\))
= 73k + 1 + 33k + 1 - 1
= 343k.3 + 27k.3 - 1
= (343k.3 - 3) + 27k.3 + 2
= 3(343k - 1) + 27k.3 + 2
= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
=> P(x) : 9 dư 2
Với x = 3k + 2
P(x) = 73k + 2 + 33k + 2 - 1
= 343k.49 + 27k.9 - 1
= (343k.49 - 49) + 27k.9 + 48
= 49(343k - 1) + 27k.9 + 48
= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3
=> P(x) : 9 dư 3
Với x = 3k
Khi đó P(x) = 73k + 33k - 1
= (343k - 1) + 27k
= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k
= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)
Vậy P(x) \(⋮\Leftrightarrow x⋮3\)
Vì 102011+8 có tổng các chữ số chia hết cho 9 nên tổng chia hết cho 9
Lại có 102011+8 có chữ số tận cùng là 008 nên chia hết cho 8
Mà (8;9)=1
=> 102011+8 chia hết cho 8.9=72
M = 1 + 3 +3^2 +... +3^99
3M = 3 +3^2 + 3^3 + .... 3^100
3M - M = (3+3^2+3^3+... + 3^100)-(1+3+3^2+...+3^99)
2M = 3^100 -1
2M+1= 3^100
2M+1 = (3^50)^2
Vậy 2M +1 là số chính phương
M = 1 + 3 + 3² + ... + 3⁹⁹
⇒ 3M = 3 + 3² + 3³ + ... + 3¹⁰⁰
⇒ 2M = 3M - M
= (3 + 3² + 3³ + ... + 3¹⁰⁰) - (1 + 3 + 3² + ... + 3⁹⁹)
= 3¹⁰⁰ - 1
⇒ 2M + 1 = 3¹⁰⁰ - 1 + 1 = 3¹⁰⁰
= (3⁵⁰)²
Vậy 2M + 1 là số chính phương
Lời giải:
Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.
Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
TH1: $p=6k+1$ thì:
$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$
Nếu $k$ lẻ thì $3k+1$ chẵn.
$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$
Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$
TH2: $p=6k+5$
$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn
$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Nếu $k$ lẻ thì $k+1$ chẵn
$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$
Do A có 30 số hạng, ta nhóm 3 số thành 1 nhóm nên vừa đủ 10 nhóm và không dư số nào.
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30
= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^28+2^29+2^30)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^28(1+2+2^2)
= 2.7 + 2^4 .7 + ... + 2^28 .7
= 7(2+2^4+...+2^28) chia hết cho7 (DPCM)